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High-order methods that can resolve interactions of flow-disturbances with shock waves
are critical for reliable numerical simulation of shock wave and turbulence interaction.
Such problems are not well understood due to the limitations of numerical methods. Most
of the popular shock-capturing methods are only first-order accurate at the shock and may
incur spurious numerical oscillations near the shock. Shock-fitting algorithms have been
proposed as an alternative which can achieve uniform high-order accuracy and can avoid
possible spurious oscillations incurred in shock-capturing methods by treating shocks as
sharp interfaces. We explore two ways for shock-fitting: conventional moving grid set-
up and a new fixed grid set-up with front tracking. In the conventional shock-fitting
method, a moving grid is fitted to the shock whereas in the newly developed fixed grid
set-up the shock front is tracked using Lagrangian points and is free to move across the
underlying fixed grid. Different implementations of shock-fitting methods have been pub-
lished in the literature. However, uniform high-order accuracy of various shock-fitting
methods has not been systematically established. In this paper, we carry out a rigorous
grid-convergence analysis on different variations of shock-fitting methods with both mov-
ing and fixed grids. These shock-fitting methods consist of different combinations of
numerical methods for computing flow away from the shock and those for computing
the shock movement. Specifically, we consider fifth-order upwind finite-difference scheme
and shock-capturing WENO schemes with conventional shock-fitting and show that a fifth-
order convergence is indeed achieved for a canonical one-dimensional shock-entropy wave
interaction problem. We also show that the method of finding shock velocity from one
characteristic relation and Rankine–Hugoniot jump condition performs better than the
other methods of computing shock velocities. A high-order front-tracking implementation
of shock-fitting is also presented in this paper and nominal rate of convergence is shown.
The front-tracking results are validated by comparing to results from the conventional
shock-fitting method and a linear-interaction analysis for a two-dimensional shock distur-
bance interaction problem.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Complex interactions between turbulent flows and shock waves are observed in several processes such as volcanic erup-
tions, detonations, supernova explosion and many aerodynamic applications. Numerical simulation of such complex prob-
lems warrants very high-order numerical methods. High-order shock-capturing schemes have been the methods of choice in
most previous numerical simulation studies of shock–turbulence interaction [1–4]. However, popular shock-capturing
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schemes reduce to first-order accuracy near the shock due to the use of dissipation near the shock. Moreover, spurious
numerical oscillations have been observed when solving strong-shock and flow interaction problems with shock-capturing
schemes [5]. In the present study, we investigate shock-fitting algorithms for shock and disturbance interaction studies.
Problem of interaction of normal shock and disturbances is fundamental to better understanding of the aforementioned
complex phenomena. To this end, shock-fitting methods developed in the current effort can be useful to find high-order solu-
tions of some simple shock and turbulence interaction problems such as shown in Fig. 1. Various researchers have consid-
ered such shock and disturbance/turbulence interaction problems in past. A brief summary is presented in ensuing sections
for previous works in the field, followed by the scope of current study.

1.1. Theoretical studies

Theoretical studies in the field of shock–turbulence interaction have been attempted mostly through linear interaction
analysis (LIA), where small perturbations in flow are considered. Kovasznay [6] showed that for weak fluctuations of velocity,
pressure, and entropy, the turbulent fluctuations about mean uniform flow can be decomposed into the vorticity, acoustic,
and entropy modes. It was shown that for first-order approximation, each of these modes evolve independently in the invis-
cid limit. However, in second-order approximation of fluctuations, interaction of these modes is possible and any two modes
can combine to generate other modes [7].

Ribner [8–10] and Moore [11] were among the earliest workers to consider theoretically the interaction of a turbulent
field with a shock wave. Ribner [8] analyzed the interaction of a plane sinusoidal disturbance in velocity (shear wave) pass-
ing through a shock as a boundary-value problem. In his analysis, the shock was kept steady by solving the equations in a
moving reference frame. It was found that the initial shear wave is amplified and refracted by the shock. He later generalized
this result from a single wave to obtain shock-interaction effects of a completely turbulent velocity field [9] and reported
significant turbulent amplification due to shock–turbulence interaction. The results were further extended [10] to provide
the flux of acoustic energy emanating from a unit area downstream of the shock. Moore [11] performed unsteady analysis
of interaction of obliquely traveling weak plane disturbances of arbitrary profile with a plane normal shock. Unlike Ribner’s
analysis, an unsteady shock was considered for linear analysis of the interaction of sound and vorticity waves with an un-
steady shock. It was found that amplification of disturbances depends on impingement angle and Mach number of the shock.
Kerrebrock [12] considered modifications of random small fluctuations of pressure, entropy and vorticity in passing through
a shock wave or flame. It was found that all modes of disturbances are generated in the downstream flow if any of the modes
is present in the upstream flow. McKenzie and Westphal [13] derived formulas for amplification and Snell’s Laws for refrac-
tion and reflection of acoustic, vorticity, and entropy waves interacting with a shock and applied the results to the amplifi-
cation of small disturbances in the solar wind on a passage through the bow shock of earth. More recent theoretical studies of
shock and turbulence interaction are by Goldstein [14], Lee et al. [15–17], Mahesh et al. [2,3,18] and Fabre et al. [19]. These
studies found that root mean square values of the fluctuating pressure, temperature, density, and different components of
the turbulent kinetic energy, are amplified across the shocks. Despite several assumptions, linear-interaction analysis
(LIA) accurately describes the essential characteristics of the interaction.

1.2. Numerical studies

Since the early 1980s, various attempts have been made towards direct numerical simulation of shock and disturbance/
turbulence interaction. Initial efforts in this area considered the interaction of a shock with simple waves. In 1981, Pao and
Salas [20] fitted the shock at an inflow boundary and solved the Euler equation with finite-difference discretization to study
a shock/vortex interaction. Shock-fitting computations with spectral techniques (Hussaini et al. [21,22], Zang et al. [23])
were later used to treat the problems in which a single vortex, a vortex sheet, an entropy spot, or an acoustic wave interacts
with the shock. The results obtained from these numerical efforts confirmed the linear theory in the regime of weak shocks.
With the advent of essentially non-oscillatory (ENO) and related schemes, shock-capturing methods gained popularity for
simulations of compressible flows. A number of new shock-capturing schemes for compressible flows have since been tested
for interaction of a shock wave with small disturbances against the results obtained from linear theory [22,24,25]. Although
limited to low Mach numbers, these studies mostly confirm the LIA results.
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Fig. 1. A schematic of typical setting of isotropic shock and turbulence interaction.
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The direct numerical studies of a fully turbulent field interacting with shocks are more recent. For the simulation of the
turbulent field, direct numerical simulation (DNS) methods and large eddy simulations (LES) have been used. However, these
different types of methods give different results when interaction with a shock is considered [26]. Most of the recent DNS
studies have been on various aspects of the interaction of a normal shock with free-stream turbulence for a relatively weak
shock of small Mach numbers. For example, Mahesh et al. [2,3] did an extensive DNS study of the interaction of a normal shock
with an isotropic turbulence. The mean shock Mach numbers were in the range of 1.29–1.8. They found that the upstream
correlation between the vorticity and entropy fluctuations has strong influence on the evolution of turbulence across the
shock. They also used linear analysis to analyze the simulation results. Other shock–turbulence interaction studies have been
conducted by the same group of workers [15,16]. Lee et al. [16] investigated the effect of Mach numbers on isotropic turbu-
lence interacting with a shock wave. The Mach numbers ranged from 1.5 to 3.0. A shock-capturing scheme was developed to
accurately simulate the unsteady interaction of turbulence with shock waves. It was found that turbulent kinetic energy is
amplified across the shock wave, and this amplification tends to saturate beyond Mach 3. Hannappel et al. [27] computed
interaction of a Mach 2 shock with a third-order shock-capturing scheme based on the essentially non-oscillatory (ENO) algo-
rithm of Harten. Jamme et al. [28] carried out a DNS study of the interaction between normal shock waves of moderate
strength (Mach 1.2 and Mach 1.5) and isotropic turbulence. Adams and Shariff [29,30] proposed a class of upwind-biased fi-
nite-difference schemes with a compact stencil for shock–turbulence interaction simulation. They used this non-conservative
upwind scheme in smooth regions while a shock-capturing ENO scheme was turned on around discontinuities. This idea of
hybrid formulation was improved by Pirozzoli [31], who used a similar hybrid formulation for a compact weighted essentially
non-oscillatory (WENO) scheme with conservative formulation for simulation of shock–turbulence interaction. Ducros et al.
[32] conducted larger-eddy simulation on shock–turbulence interaction by using a second-order finite volume scheme. The
method was then used to simulate the interaction of a Mach 1.2 shock with homogeneous turbulence.

Yee et al. [33] proposed a new kind of characteristic-type filters, which add the dissipative part of traditional shock-cap-
turing schemes to non-dissipative central schemes in order to damp out numerical instabilities. Due to this feature, charac-
teristic filters are suitable for incorporation into existing LES codes based on high-order methods, and they allow the codes to
have shock-capturing capability. This scheme was used by Sjogreen and Yee [34] for shock disturbance interaction. Recently,
Cook and Cabot [35] have used hyperviscosity formulations for shock–turbulence simulations. It functions as an effective
subgrid-scale model for both high and low Mach number flows. The model employs a bulk viscosity for treating shocks
and a shear viscosity for treating turbulence and has been used for the basic shock disturbance interaction.

It is observed that most of the studies in the field of shock–turbulence interaction have considered weak shocks only. Re-
cently, more efforts have been directed towards investigating turbulent flows with stronger shocks, which is relevant for high-
speed compressible flows. One of the main issues with shock-capturing schemes is spurious numerical oscillations created
around the shock and the loss of accuracy with dissipation needed to suppress these oscillations. Recently, Sesterhenn
et al. [36] revisited shock-fitting schemes and applied them for solving the Navier–Stokes equations in non-conservative form
for the problem of interaction of a Mach 3 shock with isotropic turbulence with encouraging results. The shock-fitting method
offers a good alternative for strong shocks with simple geometries as the shock wave is considered a sharp discontinuity.

1.3. Shock-fitting methods

Shock-fitting schemes have been used for simulations of compressible flow with well-defined shocks since the 1960s.
Moretti and collaborators developed efficient and reliable codes using shock-fitting for steady and time-dependent flows
[37–40]. In order to compute shock velocities, the Rankine–Hugoniot (R–H) conditions were used with a compatibility equa-
tion along a generator of the characteristic conoid reaching the shock. A modification of the method was proposed by Kentzer
[41] and later by de Neef and Moretti [42], where temporal derivatives of the Rankine–Hugoniot conditions were used with
characteristic equations to find the shock velocity. Since such flows do not need any shock capturing, conservative forms of
the governing equations were not required. Moretti used Riemann’s characteristic equations, discretizing them based on the
direction of propagation of the associated waves. Such methods were named k-schemes [43] and were used exclusively with
the shock-fitting method [44–48]. Moretti also considered multi-dimensional flows where shocks are not aligned with any
grid lines but float across the grids [49]. Further work was done on this floating shock-fitting technique to make it simpler
[50,51]. However, topological problems were encountered if more than one shock were present. A review of the development
of the shock-fitting methods can be found in Refs. [52,53].

Original shock-fitting schemes, with grids aligned with the shock, were adopted by a number of researchers. In the 1990’s
shock-fitting was used mostly for solving flow over blunt bodies. The bow shocks were treated as a computational boundary.
Pseudo-spectral approximations to the Euler equations employing shock-fitting were first performed by Hussaini et al. [21].
Kopriva [54,55] used the Chebyshev spectral collocation method in conjunction with shock-fitting and extended it to mul-
tidomain [56]. Cai [57] used a shock-fitting algorithm to compute two-dimensional detonation waves. Zhong [58] developed
new high-order finite-difference schemes and coupled them with the shock-fitting algorithm for studying hypersonic
boundary layers. These schemes were used for receptivity studies of supersonic boundary layers [59–63]. Brooks and Powers
[64] extended Kopriva’s spectral method with shock-fitting to solve two-dimensional axisymmetric Euler equations in a
cylindrical coordinate frame for blunt body problems. Recently, Mahlmann et al. [65] used Chebyshev spectral collocation
with shock-fitting method for study of effects of free-stream disturbances in the leading-edge region of a blunt flat plate
in supersonic flow.
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As discussed earlier, the shock-fitting method has also been applied to problems of shock and disturbance interactions.
Sesterhenn et al. [19,36] decomposed the inviscid part of the threedimensional Navier–Stokes equations in characteristic
(acoustic and convective) waves aligned with the numerical grid. Variables representing these characteristic waves are dis-
cretized using a compact fifth-order upwind scheme. This method is an extension of Moretti’s k-schemes and has been val-
idated for the problems of shock and entropy spot interaction and shock and isotropic turbulence interaction. This scheme is
different from the shock-fitting scheme we are using [58]. We solve the Navier–Stokes equation in conservative form as op-
posed to the non-conservative formulation used by Sesterhenn et al. [36] since it enables us to capture weak discontinuities
behind the main shock.

Shock-fitting methods consider the shock as a sharp discontinuity and there is no numerical smearing of the shock fronts.
Compared to shock capturing methods, the main advantage of shock-fitting methods is the possibility of achieving uniform
high-order accuracy for flow containing shock waves and avoiding possible spurious oscillations. On the contrary, most of
the popular shock-capturing methods are only first-order accurate at the shock and may incur spurious numerical oscilla-
tions near the shock.

1.4. Motivation and scope of current study

The preceding review of the field of shock interactions with disturbances and turbulence shows that the current scientific
understanding of shock–turbulence interactions in complex configurations and the ability to reliably predict these strongly
nonlinear flows remains limited. Most of the popular methods for solving compressible flow involve shock-capturing algo-
rithms for treatment of shocks. However, it has been observed that even high-order shock-capturing methods give low accu-
racy in the vicinity of the shock [66] and may lead to spurious oscillations [5]. Many shock-capturing methods introduce
some dissipation to avoid spurious oscillations which, however, is not accurate enough for simulation of turbulent flow.
On the other hand, conventional high-order finite-difference schemes or spectral methods generally used for DNS studies
cannot resolve strong gradients around shocks due to numerical instability.

In the present study, we develop shock-fitting algorithms along with high-order finite-difference schemes to gain
knowledge about nonlinear phenomena involving interaction of strong shocks and flow disturbances. Shock-fitting
algorithms treat the shock-interface sharply without local reduction of order of accuracy and are therefore compatible
with low dissipation high-order schemes used for DNS of turbulent flow. Shock/interface fitting methods are ideally sui-
ted for the cases where there is a clearly demarcated interface, such as observed in the problems involving disturbances
coming towards the normal shock. Some of canonical problems in one and two-dimensional space have been considered
in this paper and the obtained results point to the superior performance of the shock-fitting methods for such problems.

Conventionally, a shock is treated as a boundary in shock-fitting methods and grids follow the shock during the compu-
tations. This, however, might not be feasible if the shock shape becomes complex or there are large movements in the shock.
For such situations, it is useful to extend the high-order shock-fitting idea for implementation with fixed grids where the
shock front moves across grid lines. Hence, an aim of the current study is to develop new methods and algorithms to use
idea of shock-fitting on fixed grids with the help of a front-tracking method. We have developed a 2-D algorithm based
on the front-tracking approach where we use Lagrangian type marker points to track the shock front. Shock velocity is ob-
tained from a shock acceleration equation following the shock-fitting method used by Zhong [58]. The method is described in
Section 4 and results for one and two-dimensional shock–disturbance problems are presented in Section 7.

Several different ways to implement the shock-fitting methods exist in the literature. However, uniform high-order accu-
racy of various shock-fitting methods has not been systematically established for most of these methods. In this paper, we
carry out a rigorous grid-convergence study of seven different conventional shock-fitting methods for shock–disturbance
interaction problems. These seven shock-fitting methods consist of different combinations of numerical methods for com-
puting flow away from the shock and those for computing the shock velocities.

A convergence study for unsteady shock–disturbance interaction problem computed by the shock-fitting algorithms is
presented in Section 5. A two-dimensional shock–disturbance interaction problem is then considered with shock-fitting
and results are compared with those from the literature in Section 6.

Thus, main focus of the current paper is identifying various aspects of the shock-fitting algorithm that will lead to truly
high-order solutions for problems involving unsteady shock and flow interactions. Although the conventional shock-fitting
schemes can be used for only simple geometries, they offer the accuracy which can not be achieved by the common shock-
capturing schemes. Shock-fitting has been found to be very useful for many problems which involve simple shock geometry
but complex flow physics. Examples of these problems include shock–turbulence interaction [36], receptivity of hypersonic
boundary layer to free-stream disturbances [62,67] and detonations [57,68]. Moreover, the paper demonstrates high-order
accuracy for conventional as well as front tracking implementation of the shock-fitting, which provides motivation for fur-
ther development of shock-fitting based algorithms for more complex problems.
2. Governing equations

The general governing equations for compressible flow considered in this paper are the Euler equations which are given
as follows:
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@q
@t
þr � ðquÞ ¼ 0 ð1Þ

q
@u
@t
þ u � ru

� �
¼ �rp ð2Þ

@e
@t
þr � euð Þ ¼ �r � ðpuÞ ð3Þ
where q and p represent density and pressure, respectively. u ¼ ûiþ v ĵþwk̂ is the velocity vector and e = p/
(c � 1) + q(u2 + v2 + w2)/2 is the total energy of the fluid.

In numerical simulations, the compressible Euler equations (1)–(3) are written in the following conservative form,
@U
@t
þ @E
@x
þ @F
@y
þ @G
@z
¼ 0 ð4Þ
where U is the solution vector given by
U ¼ fq;qu;qv ;qw; eg ð5Þ
E, F, G are the inviscid flux terms. They are written as follows:
E ¼

qu
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quv
quw

eþ pð Þu

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð6Þ
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>>>>>>;
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8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð8Þ
3. High-order moving-grid shock-fitting method

In conventional moving-grid shock-fitting approach, a shock wave is taken as a boundary of the computational domain.
Before discretizing the governing equations by a finite-difference method, Eq. (4) in the physical domain is transformed to
the shock and boundary fitted computational domain by the following transformation relations,
n ¼ nðx; y; zÞ
g ¼ gðx; y; zÞ
1 ¼ 1ðx; y; zÞ
s ¼ t

8>>><
>>>:

()

x ¼ xðn;g; 1; sÞ
y ¼ yðn;g; 1; sÞ
z ¼ zðn;g; 1; sÞ
t ¼ s

8>>><
>>>:

ð9Þ
and the transformed governing equation in the computational domain is expressed as follows:
1
J
@U
@s
þ @E0

@n
þ @F 0

@g
þ @G0

@f
þ U

@

@s
1
J

� �
¼ 0 ð10Þ
where
E0 ¼ Enx þ Fny þ Gnz

J

F 0 ¼
Egx þ Fgy þ Ggz þ Ugt

J

G0 ¼ Efx þ Ffy þ Gfz

J

ð11Þ
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Here, J is the Jacobian of the coordinate transformation. All grid transformation metrics can be computed as a function of
distance of shock front from the exit boundary along g grid line, H(n,g,f), and its time derivative, Hs(n,g,f). A schematic
for computational grid is shown in Fig. 2 for two-dimensional grids.

In the shock-fitting method, the unsteady shock is treated as a boundary of the computational domain governed by
gðx; y; z; tÞ ¼ gmax ¼ constant ð12Þ
The interaction between the shock and disturbances is solved as a part of solutions. The position and velocity of the shock
front, represented by H(n,g,f) and Hs(n,g,f), are taken as independent flow variables that are solved by high-order finite-dif-
ference methods.

Different types of shock-fitting methods can be constructed based on the choice of two main aspects:

(a) Algorithms to compute shock movements.
(b) Methods to approximate the spatial derivatives in flow field Eq. (10).

In this paper, we evaluate numerical accuracy of seven shock-fitting schemes based on different methods of computing
shock velocities and different algorithms for discretizing the spatial derivatives in the flow equations. Table 1 shows the
naming convention adopted in this paper for the identification of different shock-fitting methods. There are two parts in
the name of a shock-fitting method: the first part represents the shock-advancing method, and the second represents the
algorithm for spatial derivatives in flow equations. Therefore, Methods A-u, B-u and C-u use different methods, A, B and
C, respectively, of shock-velocity calculations, while they all use the same 5th-order upwind scheme for spatial derivatives.
We also consider shock-fitting methods using four different methods of implementation of the WENO schemes for spatial
derivatives, which can be coupled with one of the three shock-advancing methods A, B or C. The first of these methods is
termed Method A-w1 in Table 1, which represents the use of the first WENO method coupled with Method A for the
shock-advancing method. To evaluate the effects of spatial algorithms, we only consider Methods A-w1 to A-w4 in this
paper.
3.1. Various algorithms to determine shock velocity

One of the most important aspects of a shock-fitting method is to correctly predict the shock velocity within the shock-
fitting code. Shock velocity is needed to find the position of the shock-front, which governs the boundary of the computa-
tional domain. Moreover, shock velocity coupled with Rankine–Hugoniot conditions determines the flow variables just be-
hind the shock. Hence, accuracy of shock velocity is expected to have a significant effect on the overall accuracy of the shock-
fitting scheme. The three such methods used in the currently study, listed in Table 1, are described in this section.

This paper considers only inviscid problems. However, even for solving the Navier Stokes equations, it is a general prac-
tice to use shock fitting implementations with Rankine Hugoniot jump conditions assuming the shock waves to be infinitely
thin and governed by the Euler equations (only at the shock). This is valid when the thickness of the shock wave is very small
as compared to the smallest length scales in the flow. For example, smallest length scale in turbulent flows is Kolmogorov
scale which is one to two orders larger than shock thickness in sufficiently high-speed flows [36,70]. Hence, shock-fitting
algorithms with assumption of infinitely thin shocks are expected to closely mimic the physics even with the viscous flows.
Such implementation of shock-fitting algorithm has been widely used in past for solving Navier Stokes equations where
X

Y

Shock ξ

η

H(ξ,η,ζ)

Fig. 2. Schematic of 2-D shock-fitting grids shown for shock-disturbance interactions.



Table 1
Naming convention of the seven moving-grid shock-fitting methods considered in this paper.

Name (a) Method for computing shock velocities (b) Method for discretizing flow-field equations

Method Section Method Section

Method A-u Time derivative of R–H relations with
a characteristic relation [58]

3.1.1 5th order upwind [58] 3.2.1

Method B-u Time derivative of R–H relations with
a momentum equation

3.1.2 Same as Method A-u 3.2.1

Method C-u Shock velocity directly computed by
Riemann invariants

3.1.3 Same as Method A-u 3.2.1

Method A-w1 Same as Method A-u 3.1.1 5th order WENO5 [69] with Eq. (49)
for local approximation at shock

3.2.2

Method A-w2 Same as Method A-u 3.1.1 5th order WENO5 [69] with Eq. (50)
for local approximation at shock

3.2.2

Method A-w3 Same as Method A-u 3.1.1 5th order WENO5M [68] Eq. (49) for
local approximation at shock

3.2.2

Method A-w4 Same as Method A-u 3.1.1 5th order WENO5M [68] with Eq. (50)
for local approximation at shock

3.2.2
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accuracy of the solutions is critical for reliable simulations. Examples include stability and receptivity of hypersonic bound-
ary layers [62], flows over blunt bodies [56], and shock–turbulence interactions [36].

3.1.1. Method A: time derivative of R–H relations with a characteristic relation
In this method, the velocity of the shock front is determined from a shock acceleration relation as described in detail by

Zhong [58]. This relation is obtained by taking a derivative of the Rankine–Hugoniot relations across the main shock and
using a characteristic compatibility relation from behind the shock. The location of the shock is obtained from shock-velocity
relations and the grid is modified to follow motions of the shock.

The Rankine–Hugoniot conditions relate the flow variables across the shock, which can be written in terms of flux vectors as:
F0s ¼ F00 ð13Þ
where F0s is the flux vector immediately behind the shock along the g grid line (Fig. 2) in the computational domain and F00
represents the flux vector along the g grid line on the free-stream side of the shock front. The above equation leads to the
jump conditions across the shock
ps ¼ p0 1þ 2c
cþ 1

M2
n0 � 1

� �� �

qs ¼ q0
ðcþ 1ÞM2

n0

ðc� 1ÞM2
n0 þ 2

" #

uns ¼ vn þ
q0

qs
ðun0 � vnÞ

~uts ¼ ~ut0 ¼ ~u0 � un0~n
~us ¼ ~uts þ uns~n

ð14Þ
where ~n is the local normal vector of the shock front and vn is the velocity of shock motion ~n direction which are related to
grid transformation metrics for Eq. (9) as:
~n ¼
gxîþ gyĵþ gzk̂

jrgj where jrgj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x þ g2
y þ g2

z

q
ð15Þ

vn ¼ �
gt

jrgj ð16Þ
Here the subscripts ‘‘s” and ‘‘0” represent flow variables behind the shock and on the free-stream side of the shock, respec-
tively. Mn0 is the normal component of free-stream Mach Number relative to the shock front.~u and~ut are velocity vector and
tangential velocity vector, respectively while un is the component of velocity along ~n direction.

If the velocity of the shock front, vn, is computed, the flow variables behind the shock can be calculated using the jump
conditions (Eq. (14)). A characteristic compatibility relation from behind the shock is used to determine the shock normal
velocity vn. From the governing Eq. (10) we have:
1
J
@U
@s
þ @F0

@g
¼ � @E0

@n
� @G0

@f
� U

@ð1=JÞ
@s

ð17Þ



P.S. Rawat, X. Zhong / Journal of Computational Physics 229 (2010) 6744–6780 6751
This equation is evaluated at the point immediately behind the shock. In the equations, the Jacobian matrix B0s ¼ @F 0s=@U, has
the eigenvalues
jrgj
J
ðun � vnÞs; . . . ;

jrgj
J
ðun � vnÞs;

jrgj
J
ðun � vn � cÞs;

jrgj
J
ðun � vn þ cÞs ð18Þ
where c is speed of the sound. The corresponding left eigenvectors are I1, I2, . . ., IN�1, IN, where N is the number of independent
variables in the equations, and
IN ¼
1

2c2

ðc� 1Þðu2 þ v2 þw2Þ � 2cun

cnx � ðc� 1Þu
cnx � ðc� 1Þv
cnx � ðc� 1Þw

c� 1

2
6666664

3
7777775

ð19Þ
The left eigenvector behind the shock satisfies
IN � B0s ¼
jrgj

J
ðun � vn þ cÞsIN ð20Þ
The characteristic field approaching the shock from behind corresponds to the eigenvalue (rg/J)(un � vn + c)s. The corre-
sponding eigenvector is IN. The compatibility relation at a grid point immediately behind the shock for this characteristic
field can be obtained by multiplying Eq. (17) by IN,
IN �
@U
@s

� �
¼ IN � �

@E0

@n
� @F0

@g
� @G0

@f
� @E0v
@n
� @F0v
@g
� @G0v

@f
� U

@ð1=JÞ
@s

� �
J ð21Þ
On the other hand shock jump condition (13) can be rewritten as
½F 0� ¼ Fs � F0ð Þ � aþ ½Us � U0�b ¼ 0 ð22Þ
where
a ¼ ðgx=JÞsiþ ðgy=JÞsjþ gz=Jð Þsk
b ¼ gt=Jð Þs

ð23Þ
Taking derivative of Eq. (22) with respect to s in the computational space leads to
B0s@Us=@s� B00@U0=@sþ Fs � F0ð Þ � @a=@t þ ðUs � U0Þ@b=@s ¼ 0 ð24Þ
where the flux Jacobian B0 = @F0/@U, is the Jacobian of the g direction flux defined in the conservation Eqs. (10) and
@a
@s
¼ @ðgx=JÞs

@s
iþ

@ðgy=JÞs
@s

jþ @ðgz=JÞs
@s

k

@b
@s
¼ @ðgt=JÞs

@s

ð25Þ
These time derivatives of the grid metrics can be derived by the same methods as those used in the discretization of the inte-
rior equations.

The equation for shock velocity can now be obtained by multiplying both sides of Eq. (24) by IN and using Eq. (20), i.e.
@b
@s
¼ �1

IN � ðUs � U0Þ½ �
jrgj

J
ðun � vn þ cÞsIN �

@U
@s

� �
s
þ IN � Fs � F0ð Þ � @a

@t
� IN:B

0
0

	 
 @U0

@s

� �
ð26Þ
where the term IN � (@U/@s)s is computed using the characteristic relation (21), in which the spatial derivatives are discret-
ized using one-sided finite-difference scheme together with the discretization of the interior points for the Eq. (10). In the Eq.
(26) @b/@s and @a/@s can be expressed as a function of H and Hs as
@b
@s ¼ d1ðn; f;H;HsÞ þ d2ðn; f;H;HsÞ

@Hs

@s ð27Þ

@a
@s
¼ gðn; f;H;HsÞ ð28Þ
where H = H((n,f,s) is the distance between the shock and the wall along g = constant grid line (as shown in Fig. 2), and
Hs = @H/@s. The coefficients d1, d2 and vector g are functions of grid metrics.
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Eqs. (26)–(28) yield governing equations for the shock motions for two independent variables, Hand Hs, in the form
@Hs

@s
¼ f n; f;Us; IN �

@Us

@s

� �
;U0;

@U0

@s

� �
;H;Hs

� �
@H
@s
¼ Hs

ð29Þ
The equations specified in Eq. (29) along with Eq. (10) form a system of equations in flow variables, shock position, and shock
velocity. The resulting equations are solved using explicit Runge–Kutta schemes.

3.1.2. Method B: time derivative of R–H relation together with a momentum equation
Henrick et al. [68] use a different method to find the shock acceleration using the momentum equation along the shock

normal direction instead of a characteristic relation. Conservation of mass across the shock wave gives
qsuns ¼ qsvn þ q0ðun0 � vnÞ ð30Þ
Using qs ¼ q0 ðcþ 1ÞM2
n0=fðc� 1ÞM2

n0 þ 2g
h i

(from Eq. (14)) and M2
n0 ¼ q0u2

n0=cp0 leads to the momentum in the normal

direction as follows:
qsuns ¼
q0ðvn � un0Þ cðq0ðvn � un0Þun0 � 2p0Þ þ q0 2v2

n � 3vnun0 þ u2
n0

	 
� �
cð2p0 þ q0ðvn � un0Þ2Þ � q0ðvn � un0Þ2

; ð31Þ
where, un is the flow velocity normal to the shock and vn is the velocity of the shock. Henrick et al. [68] use this relation to
find the shock acceleration in one-dimensional detonation problems. Noting that momentum qsuns in Eq. (31) is only func-
tion of shock velocity, shock acceleration can be written as chain rule as follows for a one-dimensional problem.
dvn

ds
¼ dðqsunsÞ

dvn

� ��1

� dðqsunsÞ
ds

� �
ð32Þ
One can take the derivative of Eq. (31) with respect to shock velocity to obtain d(qsuns)/dvn while the term (d(qsuns)/ds) is
computed directly as one solves the momentum Eq. (2). The method described here is similar to, but more general than,
the shock-fitting method of Henrick et al. [68], where they solve one-dimensional governing equations in a reference frame
fixed to the shock front.

3.1.3. Method C: shock velocity directly computed by Riemann invariants
An alternative to shock acceleration based methods is to compute the shock velocity directly using the value of a Riemann

invariant from behind the shock. This method is simple to implement, and most early shock-fitting methods used this idea to
compute shock velocity [37,43]. Only a one-dimensional example is described here. The method can be easily extended to
multi-dimensional problems.

For an unsteady one-dimensional flow, a schematic of the shock and trajectories of C+ characteristics emanating from the
grid points behind the shock is shown in Fig. 3. The flow on the right of the shock is approaching the shock with supersonic
speed relative to the shock, and flow behind (left of) the shock is subsonic in the shock reference frame. Flow variables ahead
of the shock are known while shock-fitting methodology is used to compute the flow behind the shock. To compute the
shock velocity consistent to the physics for this configuration, the method should use one characteristic (C+) wave coming
from behind the shock along with the information from the supersonic region ahead of the shock. Along the C+ line behind
the shock, defined by dx/dt = u + c, we have a constant Riemann invariant given by
1n
sx +

4 3 2 1      ( )n
sILIL IL IL ILx x x x x x− − − − =

C+

t 

Δ t 

tn 

tn+1 

x

Shock 

Mshk > 1 

Flow

   Mshk < 1 

Fig. 3. Finding shock velocity based on value of Riemann invariant from behind the shock ðJþs Þ.
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Jþs ¼ us þ 2cs=ðcs � 1Þ ð33Þ
Using cs = c0(ps/p0)1/2(q0/qs)1/2 and Rankine Hugoniot relations for us, ps and qs from Eqs. (14) and (33) leads to following rela-
tion between Jþs and flow variables in front of the shock:
Jþs
c0
¼ 2ðM2

1 � 1Þ
ðcs þ 1ÞM1

þ u0

c0
þ 2
ðcs � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2csðM

2
1 � 1Þ

ðcs þ 1Þ

" #
2þ ðcs � 1ÞM2

1

ðcs þ 1ÞM2
1

" #vuut
M1 ¼ ðv s � u0Þ=c0

ð34Þ
where c0 is the speed of sound upstream of the shock and vs is velocity of the shock. The Mach number of the supersonic flow
relative to shock is denoted by M1. Once the Jþs value is known behind the shock, the shock velocity can be found using a
numerical method to solve Eq. (34). With known values of flow-field variables, shock velocity vn

s and shock location xn
s at

a time tn (Fig. 3), one can find the velocity vnþ1
s at new time step, tn+1 = tn + Dt, using the following algorithm:

1. Advance the shock to new position, xnþ1
s ¼ xn

s þ Dt � vn
s .

2. Choose an appropriate number of grid points (5 in current study) behind the shock at time tn, and find the location of C+

lines (dx/dt = u + c) originating from these points at time tn+1. The values of Riemann invariant J+ = u + 2c/(c � 1) at the
chosen grid points are also computed and stored.

3. Using locations of C+ lines originating from chosen grid points and corresponding J+ values found in step 2, interpolate to
obtain the Riemann invariant behind the shock Jþs corresponding to xnþ1

s location at tn+1.
4. With the known value of Jþs , solve Eq. (34) to obtain vnþ1

s .

The shock velocity is thus obtained at the new time without needing to find the shock acceleration values.

3.2. Methods for discretizing flow-field equations

Shock-fitting methodology can be applied with any scheme for approximating spatial derivatives in the computational
domain away from the shock. In the current study we use a 5th order upwind scheme as well as 5th order WENO schemes
(Table 1) which are described next.

3.2.1. Fifth order upwind finite-difference scheme (used in Method A-u)
In this method, an explicit finite-difference scheme from Ref. [58] is used for spatial discretization of the governing Eq.

(10). The flux terms are discretized by a fifth-order upwind scheme. For the inviscid flux vectors, the flux Jacobians contain
both positive and negative eigenvalues. A local Lax–Friedrichs scheme is used to split vectors into negative and positive wave
fields. For example, the flux term F0 in Eq. (10) can be split into two terms of positive and negative eigenvalues as follows:
F 0 ¼ F 0þ þ F 0� ð35Þ
where F 0þ ¼ F 0 þ kU
	 


=2 and F 0� ¼ ðF
0 � kUÞ=2 and k is chosen to be larger than the local maximum eigenvalue of F0, i.e.,
k ¼ jrgj
J

ffiffiffiffiffiffiffiffiffiffiffi
ðecÞ2

q
þ u02 þ c

� �
ð36Þ
where
u0 ¼
gxuþ gyv þ gzwþ gt

jrgj ð37Þ
The parameter e is a small positive dimensionless constant added to adjust the smoothness of the splitting. The fluxes F0þ and
F0� contain only positive and negative eigenvalues, respectively. Therefore, in the spatial discretization of Eq. (10), the deriv-
ative of the flux F0 is split into two terms
@F 0

@g
¼ @F 0þ

@g
þ @F 0�
@g

ð38Þ
where the first term on the right hand side is discretized by the upwind scheme and the second term by the downwind
scheme. Other terms in Eq. (10) are treated similarly.

The fifth-order explicit scheme utilizes a 7-point stencil and has an adjustable parameter a as follows:
u0i ¼
1

hbi

X3

k¼�3

aiþkuiþk �
a

6!bi
h5 @6u

@x6

 !
i

þ � � � ð39Þ
where ai±3 = ±1 + a/12, ai±2 = �9 � a/2, ai±1 = ± 45 + 5a/4, ai = �5a/3 and bi = 60. The scheme is upwind when a < 0 and
downwind when a > 0. It becomes a 6-order central scheme when a = 0. For a 5th order upwind scheme, a typical value
of a = �6.0 is used.
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3.2.2. Fifth order WENO schemes: WENO5 and WENO5M
In the typical shock–turbulence interaction problem (Fig. 1), the flow behind the main shock may encounter formation of

weak secondary shocks. Hence, even as the main shock is fitted, a shock-capturing scheme may be needed to compute the
flow behind the fitted main shock. We have combined the shock-fitting algorithm with two 5th order WENO schemes. The
first WENO scheme is based on Jiang and Shu’s [69] formulations, which will be referred in this paper as the WENO5 scheme.
Henrick et al. [68] suggested an improvement over the WENO5 scheme to obtain more accurate solutions in the smooth re-
gion. This scheme is referred in this study as the WENO5M scheme.

In the WENO5 scheme, a spatial derivative of any scalar function f is approximated as follows:
@f ðuÞ
@x


x¼xj

� f̂ jþ1=2 � f̂ j�1=2

Dx
ð40Þ
where f̂ jþ1=2 is an approximation to the numerical flux function which is constructed from a weighted sum of fluxes from
three different three point stencils as:
f̂ jþ1=2 ¼ x1 f̂ ð1Þjþ1=2 þx2 f̂ ð2Þjþ1=2 þx3 f̂ ð3Þjþ1=2 ð41Þ
where,
f̂ ð1Þjþ1=2 ¼
1
3

fj�2 �
7
6

fj�1 þ
11
6

fj

f̂ ð2Þjþ1=2 ¼ �
1
6

fj�1 þ
5
6

fj þ
1
3

fjþ1

f̂ ð3Þjþ1=2 ¼
1
3

fj þ
5
6

fjþ1 �
1
6

fjþ2

ð42Þ
and xi are nonlinear weights given by
xi ¼
riP3

k¼1rk

; where ri ¼
ci

ðe� þ bkÞ
2 ð43Þ
Here, ci represent the ideal weights, which correspond to 5th order scheme with Eq. (23) and are given as
c1 ¼
1

10
; c2 ¼

3
5
; c3 ¼

3
10

ð44Þ
and the indicators of smoothness, bk, are given by:
b1 ¼
13
12

fj�2 � 2f j�1 þ fj
	 
2 þ 1

4
fj�2 � 4f j�1 þ 3f j

	 
2

b2 ¼
13
12

fj�1 � 2f j þ fjþ1
	 
2 þ 1

4
fj�1 � fjþ1
	 
2

b3 ¼
13
12

fj � 2f jþ1 þ fjþ2
	 
2 þ 1

4
3f j � 4f jþ1 þ fjþ2
	 
2

ð45Þ
The parameter e* is a constant used to keep the weights bounded. Eqs. (40)–(45) describe the WENO5 scheme and, generally,
e* = 10�6 is used to obtain a fifth order accuracy in the smooth region while keeping the solution stable near discontinuities.

In the WENO5M scheme, Henrick et al. [68] suggest that solution accuracy can be improved by mapping the weights in
Eq. (43) to get the final weights as
�xi ¼
giðxiÞP3

k¼1gkðxkÞ
ð46Þ
where gk(x) is the mapping function given by
gkðxÞ ¼
x rkþr2

k � 3rkxþx2
	 

r2

k þ 1� 2rkð Þx ð47Þ
Instead of Eq. (41), the WENO5M scheme uses following equation with e* = 10�40:
f̂ jþ1=2 ¼ �x1 f̂ ð1Þjþ1=2 þ �x2 f̂ ð2Þjþ1=2 þ �x3 f̂ ð3Þjþ1=2 ð48Þ
As detailed in [68,69], for the Euler equations, a simple local Lax–Friedrichs flux splitting is first carried out for flux terms in
all directions following Eqs. (35)–(38) to divide the flux vectors into negative and positive wave fields. The procedure for
finding smoothness indicators bk and weights xi (for the WENO5 scheme) or �xi (for the WENO5M schemes) is carried
out in local characteristic fields. We find a Roe average [71] of grid point values and then, based on eigenvectors of Jacobian,
transform all the quantities needed for evaluating numerical fluxes to local characteristic fields. The numerical fluxes in each
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Fig. 4. For application of shock-fitting with 5th order WENO schemes, upwind finite differencing is used for points close to shock (shown by filled circles)
while WENO scheme is applied for the interior (shown by hollow circles).
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characteristic field are found by using the scalar procedure described above (Eqs. (41)–(48)), followed by a transformation
back to original physical space.

In general, weights are modified in WENO schemes such that essentially one-sided stencils are used near the boundary
points. Shock is treated like a boundary in the shock-fitting method. In fact, our standard shock-fitting Method A-u [58]
needs flux values at the shock points to find the shock acceleration, which is then used to calculate the advancement of
the shock. Since the fifth-order WENO schemes described above need three grid points on either side to compute fluxes
at any point, we use one-sided finite-difference scheme for the grid points near the shock. In this way, the WENO stencil does
not cross the shock. We choose to use fix stencil for the points near the shock boundary so as to better control the accuracy.
Such one-sided stencils have been used successfully by other researchers with shock-fitting [68]. Fig. 4 shows a schematic of
the computational domain highlighting the points where one-sided difference should be used. Specifically, if the shock lies
on the grid line represented as I = IL, one-sided finite differencing is used for points with I = IL � 2, IL � 1, IL. There are many
choices available for one-sided finite-difference schemes for the three grid points close to the shock boundary. In this study
we consider both the WENO5 and WENO5M schemes along with following one-sided 5-point finite-difference formulas near
the shock.
@f
@x


I¼IL

� 1
12Dx

3f IL�4 � 16f IL�3 þ 36f IL�2 � 48f IL�1 þ 25f ILð Þ þ O Dx4	 

@f
@x


I¼IL�1

� 1
12Dx

�fIL�4 þ 6f IL�3 � 18f IL�2 þ 10f IL�1 þ 3f ILð Þ þ O Dx4	 

@f
@x


I¼IL�2

� 1
12Dx

fIL�4 � 8f IL�3 þ 8f IL�1 � fILð Þ þ O Dx4
	 


ð49Þ
The one-sided formulas in Eq. (49) are 4th order accurate. Henrick et al. [68] suggest using following combination of one-
sided approximation near the shock, which have also been considered to use with WENO5 and WENO5M in this study.
@f
@x


I¼IL

� 1
60Dx

�12f IL�5 þ 75f IL�4 � 200f IL�3 þ 300f IL�2 � 300f IL�1 þ 137f ILð Þ þ O Dx5	 

@f
@x


I¼IL�1

� 1
12Dx

�fIL�4 þ 6f IL�3 � 18f IL�2 þ 10f IL�1 þ 3f ILð Þ þ O Dx4	 

@f
@x


I¼IL�2

� 1
60Dx

�2f IL�5 þ 15f IL�4 � 60f IL�3 þ 20f IL�2 � 30f IL�1 � 3f ILð Þ þ O Dx5	 

ð50Þ
Combinations of the WENO5 and WENO5M schemes with application of Eqs. (49) and (50) near the shock give rise to four
different ways of discretizing flow-field equations in a shock-fitting method. Shock-fitting methods coupling these four dif-
ferent WENO schemes with method A of finding shock-velocity have been considered in this paper and are referred in Table
1 as Methods A-w1 to A-w4.
4. A new front-tracking based high-order shock-fitting method

The conventional moving-grid shock-fitting methodology assumes the shock to be the boundary of the domain and flow
is solved on moving grids. However, this approach becomes difficult to apply for a problem where shock geometry becomes
complex or the shock performs large motions. Hence, it is useful to develop a methodology that can implement ideas of a
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shock-fitting algorithm on fixed grids. In this section, we present and evaluate a new fixed grid shock-fitting method, where
the shock is treated as an interface that can move across fixed grid points. Such idea was explored in past as floating shock-
fitting methods by Moretti [49]. The method is similar to fixed grid Cartesian grid methods, such as the Immersed Boundary
Method (IBM) [72], Immersed Interface Method (IIM) [73], and Ghost-fluid method [74] coupled with methods to track the
front [75–77].

4.1. Shock front definition and geometric parameters

In our methodology, the shock-front is assumed to be sharp and is represented using Lagrangian marker points. The shock
front is represented by the marker points through 4th order piecewise polynomial interpolations. For convenience in taking
one-sided finite differences at the shock front, intersection points of the front with the grid lines are chosen as marker points.
Fig. 5 shows typical marker points (Si,Si+1, etc.) for a shock-front moving across a two-dimensional grid. These marker points
are stored in a sequenced list. The order in the list indicates the immediate neighboring markers of a marker as shown in the
Fig. 5.

The notation used here is such that as we move along the markers by incrementing in this sequenced list, the low-pres-
sure side of the shock should be on the left. With each marker point, information regarding geometry of the front, flow prop-
erties corresponding to the marker points and relation of marker point with the fixed grid is also needed to be saved.

Coordinates of the marker points are computed and saved for each marker points. A critical part of information regarding
shock-geometry for the shock-fitting method is shock shape, specifically, the shock normal and tangential unit vectors which
are obtained using the coordinates. We use the following parametric representation for the marker points to obtain shock
normal and shock tangential unit vectors:
Fig. 5.
coordin
x ¼ xðsÞ
y ¼ yðsÞ

ð51Þ
where s represents the arclength along the interface. Arclength is chosen as the parameter to represent the surface since arc-
length value monotonically increases along the surface and each value of arclength coordinate correspond to a unique point
on the interface. Moreover, s represents the value of the local coordinate in the tangential direction which can be readily used
to obtain tangential derivatives of various flow variables where needed. Using s as a parameter, we define components of the
normal and tangential unit vectors in 2-D as follows:
nx ¼
@y=@s

ð@x=@sÞ2 þ ð@y=@sÞ2
h i1

2
; ny ¼

�@x=@s

@x=@sð Þ2 þ @y=@sð Þ2
h i1

2
;

s1x ¼
@x=@s

ð@x=@sÞ2 þ ð@y=@sÞ2
h i1

2
; s1y ¼

@y=@s

@x=@sð Þ2 þ @y=@sð Þ2
h i1

2
�

ð52Þ
This way of computing local unit vectors ensures that the normal vector points from the high-pressure side towards the low-
pressure side (Fig. 5). Thus, using the direction of the normal vector at any marker point, we are able to identify the high and
low-pressure sides of the shock with respect to the given marker point.

It is noted, however, that it is not trivial to find high-order approximations to arclength using the coordinates of the mar-
ker points. For a curve represented by a set of marker points with coordinates (xj, yj), j = 1,2, . . .,N, following iterative proce-
dure is used to find the arclength s consistent with polynomial interpolations:
Low P side

High P side

→
n

Si-4

E ABCD

Si-3

Si+3
Si+2

Si-1

Si+1Si
→
τ2

Si+4

Si-2

x

y

z

ξ*η*

ζ*
→
τ1

Schematic for arrangement of marker points and stencil for one-sided differentiation for the fixed-grid-shock-fitting methodology. A local natural
ate system (n*, g*, f*) used for computation of shock front velocity at marker point Si is also shown.
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0. Initialize an approximate value of arclength, tk, as a summed distance between the marker points:
Fig. 6.
Pi�2, Pi�
tk ¼
Xk

j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xj�1Þ2 þ yj � yj�1

	 
2
q

k ¼ 2;3; . . . ; Nð Þ; ð53Þ
1. From xk = xk(tk) and yk = yk(tk), find 5th order polynomials x = x(t), y = y(t) through each marker point,
2. Carry out numerical integration to update the value of approximate arclength at each point as follows:
t�k ¼
Xk

i¼1

Z tiþ1

ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdx=dtÞ2 þ ðdy=dtÞ2
h i1

2

r
dt; ð54Þ
3. If jt�k � tkjP es (an error tolerance value), go to Step 1 with tk ¼ t�k; otherwise exit the loop with sk ¼ t�k.

In our tests it was found that generally less than five such iterations were required for an error tolerance value of
es = 10�10Dx.

4.2. Finite difference schemes for irregular grid points near shock front

In the present fixed-grid shock-fitting scheme, we use the same algorithms as those of the conventional shock-fitting
Method A-u for regular grid points away from the shock. Thus, Eqs. (1)–(11) are still applicable in this formulation, except
fixed grids are used with a constant Jacobian of grid transformation. The 5th order upwind method given by Eq. (39) can be
used on the regular points where finite-difference stencil does not cross the shock front. However, special treatment is
needed for the ‘‘irregular” points where the stencil requires points on both sides of the shock. For example in Fig. 5, grid
points ‘D’ and ‘E’ are regular grid points because a seven point stencil needed for the fifth-order upwind scheme at these
points does not cross the shock. On the other hand, grid points ‘A’, ‘B’ and ‘C’ are irregular points in this example. There
are irregular grid points on both sides of the shock along x, as well as y-direction grid lines.

The flow ahead (low-pressure side) of the shock is supersonic with respect to the shock and does not need any informa-
tion from the shock. Information from the low-pressure side of the shock is duly taken into account based on the direction of
flow characteristics and Rankine Hugoniot jump conditions. Thus, separate stencils can be used on either side of the shock in
the front-tracking based shock-fitting scheme. To avoid crossing the discontinuous shock-front by the grid stencils, we use
one-sided finite differencing on the irregular points. For calculation of the first x derivative of a variable u with n � 1th order
of accuracy, we use a polynomial interpolation based on a set of n points, In, which is represented by x coordinate values:
x1,x2, . . .,xn. The derivative of any variable u at a point xj (where j 2 In) is given as follows:
@u
@x

� �
x¼xj

¼
X
i2In

ln0

i ðxjÞuðxiÞ ð55Þ
where ln
i ðxÞ is the ith Lagrange basis polynomial on In given by
ln
i ðxÞ ¼

Y
k2In – i

ðx� xkÞ
, Y

k2In – i

ðxi � xkÞ ð56Þ
We use 4th order accurate derivatives at the irregular grid points and 5th order upwind scheme of Zhong [58] at regular
points. Fig. 6 shows an example of the points used in the stencil for finding the first x derivatives of flow variables at irregular
points (Pi�2,Pi�1 and Pi) in the low-pressure side of the shock. Along with the interface point (PC), the one-sided stencil con-
sists of grid points in the low-pressure side along a horizontal grid line (points Pi, Pi�1, etc.). When one-sided derivatives are
computed, there might be issues with method stability if the stencil has one of the grid points too close to the interface. In
this case, that grid point should be removed from the interpolation stencil in order to maintain numerical stability. Hence the
choice of stencil is based on the separation of interface point PC from the nearest grid point Pi represented by
Low P side

Pi-2

Si

PΓPi
Pi-4 Pi-3 Pi-1

Stencil used for 4th order approximation of first x derivatives of flow variables at irregular grid points. If r P r* the stencil consists of points Pi�3,
1, Pi and PC. If r < r* points Pi�4, Pi�3, Pi�2, Pi�1 and PC are used.
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r ¼ jxi � xCj
jxi � xiþ1j

ð57Þ
A critical value, r*, of this separation parameter is used to decide the stencil taken for one-sided differencing. Two cases are
possible:

1. r P r*: When the grid point Pi has reasonable separation from the marker point PC, it is included in the stencil. Hence, for
the example of Fig. 6, a 4th order approximation of the first x derivative of any variable at irregular grid points (Pi�2, Pi�1

and Pi) is obtained by using set of points Pi�3, Pi�2, Pi�1, Pi and PC in Eq. (55).
2. r < r*: When a marker point PC and the nearest interface point Pi are too close to each other, we include PC, but do not

use the point Pi in the stencil. In order to maintain the same order of accuracy, an additional grid point, Pi�4, from the
other end is added to the stencil. In this case, the stencil for the 4th order approximation of the first x derivative of
any variable at irregular points consists of Pi�4, Pi�3, Pi�2, Pi�1 and PC, as shown in Fig. 6. Values at the point Pi, which
is dropped from the stencil, are updated by a high-order interpolation from other points of the stencil.

With the appropriate stencils in Fig. 6, values of flow variables at markers and grid points on the low-pressure side of the
shock are used to compute derivatives in Eq. (10) at irregular grid points (Pi�2, Pi�1 and Pi). Finite difference approximations
on the high-pressure side are found by using values at the high-pressure side of the marker points. Similar to x derivatives,
finite difference approximations of derivatives in y direction are calculated using appropriate points along vertical grid lines.

Stability of the high order finite-difference scheme with one-sided differencing at the shock was shown by Zhong [58] on
the uniform grid. The stability analysis for the implementation described above is presented in Section 4.5. Based on eigen-
value analysis of the discretization used for fixed-grid shock-fitting and our computational experiments we use r* = 1 for
stability. Thus, the nearest grid point to the shock is not used in the stencil and minimum distance between two points
in non-uniform stencil is same as the grid spacing. One-sided finite difference is used for irregular points to avoid finite dif-
ference stencils crossing the shock front. However, if appropriate jump conditions are known at the shock front, one can use
schemes like immersed interface methods (IIM) that find the finite-difference approximation for irregular grid points using a
regular stencil with correction terms based on jump conditions. Such methods allow for flow of information across the
shocks and can be more accurate if exact jump conditions are enforced. Moreover, the ad hoc parameter r* would not be
needed. Recently, Zhong [73,78] developed a new immersed interface algorithm that requires jumps only in values of flow
variables and their first derivatives while showing arbitrarily high-order accuracy. Since up to first-order jump conditions
can be derived from the physics of the problem, this method is more suitable for high-order computations of real problems
than other IIM schemes which need higher order derivatives of flow variables to obtain higher order of accuracy. Such IIM
schemes should be considered in the future as improvement on the one-sided finite differencing scheme.
4.3. Data structure for marker points at the front and grid points

In addition to the shock front and geometric parameters defined in Section 4.1, the values of flow variables and shock
velocity are saved at each marker point. Moreover, data structure is needed to relate marker points on the front with grid
points in flow-field. For a two-dimensional grid, there are two types of marker points along the shock front: those at the
intersection of the front and a horizontal grid line (n-grid line), and those at the intersection with the vertical grid line
(g-grid line). Since each marker point is an intersection point, the relation between grid points and marker points is estab-
lished by storing the type of intersection point (intersecting with n-line or g-line) and indices of intersecting gridline for each
marker point. Indices of irregular grid points associated with a marker point are also stored with each marker for efficient
implementation of one-sided finite difference.

At each grid point, an indicator value, /, is saved to indicate whether the grid point is located at the high pressure or low-
pressure side of the shock. There can also be some grid points lying between two interface points where one-sided differ-
encing may not be applied because enough points are not available (Fig. 7). Such points are ‘‘skipped” for flux calculations
and a unique value of indicator function is assigned to identify such points. Overall, the values of indicator function are de-
fined at every grid point as follows:

/ = 1 for normal points on the low-pressure side.
/ = �1 for normal points on the high-pressure side.
/ = 2 for skipped points on the low-pressure side on a n-grid line.
/ = �2 for skipped points on the high-pressure side on a n-grid line.
/ = 3 for skipped points on the low-pressure side on an g-grid line.
/ = �3 for skipped points on the high-pressure side on an g-grid line.
/ = ±4 for points which do not have enough points in both directions.

For each marker point, the indicator values at its neighboring grid points are checked to see if there are any grid points
with j/j > 1. Since flux values can not be computed at such grid points, these points are updated using interpolations. For a
grid point with j/j = 2, we choose points along the corresponding g-grid line to obtain flow variables at this point by a poly-



X

Y

Low Pressure Side

High Pressure Side

A

a2

a1

a5

a4

a3

B C

Fig. 7. Treatment of grid points where enough points are not available for taking one-sided difference in x-direction (/ = �2), shown by filled circles. For
such points, interpolation is carried out using neighboring grid-points Y-direction, shown by filled triangles.
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nomial interpolation. Similarly, neighboring grid points along a n-grid line are used in an interpolation at a grid point with j/
j = 3. In Fig. 7, an example is shown of grid point A with / = �2, which is represented as filled circle. In this case, the grid
points shown by filled triangles (a1,a2, . . .,a5) are used to obtain the flow variables at point A by a polynomial interpolation.
The isolated points given by / = ±4 are left out of calculations altogether and can not be handled using one-sided differences.
In this case, the grid resolution needs to increase in order to resolve flow variables in this region.

4.4. Shock front velocity

We use the shock-fitting technique of Ref. [58] to obtain an equation of shock acceleration using the Rankine–Hugoniot
jump conditions at the shock coupled with characteristic information from the high-pressure side of the flow. In a moving-
grid shock-fitting method, the shock is represented as a moving-grid surface of the computational domain. Hence, a shock
velocity is related to the grid velocity and metrics of the grid transformation. Since the shock is represented by grid points,
flow variable values are readily available for use in finding shock acceleration at the shock points.

In this paper, the conventional shock-fitting method for finding the shock velocity has been extended to the current fixed-
grid based shock-fitting method on a fixed grid. This is accomplished through a transformation of the governing equations to
the local natural coordinates associated with the local tangential and normal directions to the shock. For computation of the
shock velocity at a marker point Si in Fig. 5, we locally transform the governing equations to a local natural coordinate system
(n*, g*, f*, s*), where g* represents coordinate in the direction of the shock normal ~n, n* and f* coordinates are aligned in
tangential directions, and s* = t is the time variable for the transformed coordinate system. Orthogonal transformation of
the governing equations is carried out from the physical coordinates to the local natural coordinates as
n� � n�s
g� � g�s
f� � f�s

s�

2
6664

3
7775 ¼

s1x s1y s1z 0
nx ny nz 0
s2x s2y s2z 0
0 0 0 1

2
6664

3
7775

x� xs

y� ys

z� zs

t

2
6664

3
7775 ð58Þ
where ~n represents the shock normal unit vector at the given point Si, and ~s1 and ~s2 are tangential unit vectors. The com-
ponent s1x in the transformation matrix above is the directional cosine of the local unit vector ~s1, with respect to the x-axis.
The other components of the matrix can be defined similarly. The coordinates of marker point Si in the local natural coor-
dinate system are n�s ;g�s ; f

�
s

	 

, and those in the physical coordinate system are (xs, ys, zs).

With the transformation to the local natural coordinate system, one can directly use the moving-grid shock-fitting meth-
od of Ref. [58]. Following the relations given by Zhong [58], we obtain the following relation for the shock acceleration:
@vn

@t
¼ 1

IN � Us � U0ð Þ½ � ðuns � vn þ csÞIN �
@U
@s�

� �
s
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s
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� �
s
þ nz

@U
@z

� �
s

� � ð59Þ
Here, vn is the shock normal velocity and uns is the normal component of flow velocity on the high-pressure side of the shock.
IN is the left eigenvector for the characteristic field approaching the shock from behind with a velocity (eigenvalue) of
(uns � vn + cs). Conservative flow variables represented by U and flux vectors ~F ¼ Êiþ Fĵþ Gk̂ have the same form as given
by Eqs. (5)–(8). Subscripts ‘s’ and ‘0’ are used to denote the high pressure and low-pressure sides of the shock respectively.
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The values of the fluxes, flow variables, and their spatial derivatives at the marker point are obtained by high-order polyno-
mial interpolations. Thus along with the Navier–Stokes equations, one needs to solve the following system of equations:
Fig. 8.
New va
@vn

@s ¼ f xs; ys;Us;U0; IN �
@Us

@s ;vn

� �
@xs

@s
¼ vnnx

@ys

@s
¼ vnny

ð60Þ
The locations of all marker points and the shock shape are updated with time by solving Eq. (60) by a Runge–Kutta scheme.
From one time step to the next, a new set of intersection points with the grid lines are recalculated by using a Newton–Raph-
son iteration procedure. Subsequently, the geometric properties of the shock and the shock data structure are also updated.
As the shock-front moves from one time step to the next, it can cross some grid points as highlighted by the circles in Fig. 8.
As a result, the value of the indicator / changes sign and the flow variables at such grid points will experience a discontin-
uous transition from one side of the shock to another. Current algorithm checks for these ‘‘crossed” grid points after every
time step and corrects the value of the indicator /. New flow variable values at these points are corrected to those of the
other side of the shock by a polynomial interpolation. The stencil for the polynomial interpolation is chosen by taking closest
grid points with same / value. The procedure is similar to updating j/j > 1 points as described in Section 4.3.

In this paper, Eq. (60) is advanced in time by Runge–Kutta schemes of up to third-order accuracy. As an example, an algo-
rithm with the first-order Euler method of time stepping is shown below:

General Algorithm:

0. Set initial conditions of flow-field variables and interface data.
1. Find one-sided difference coefficients for the irregular points.
2. Find fluxes at all the grid points, including regular and irregular points.
3. Compute the right hand side of shock acceleration relation in Eq. (60).
4. Update values of flow variables from the calculated fluxes to obtain Un+1 at all regular grid points as well as irregular

grid points where j/j = 1 and r P r*.
5. Compute new shock-front locations and velocities, and make necessary corrections due to shock movement across the

grids:
a. Update Un+1 at grid points where r < r*.
b. Update Un+1 at grid points where j/j > 1.
c. Update shock velocities for all interface points and the coordinates of the previous marker points at time step n + 1.
d. Obtain new marker points at the intersection of the new shock shape with the grid lines.
e. Identify and update the grid points that are crossed by the shock movement.
f. Update the data structure relating grid points and markers.

6. Advance time tn+1 = tn + Dt.
7. Obtain flow-field values at the low-pressure (supersonic) side of the marker points from a one-sided interpolation.
8. Use the Rankine–Hugoniot relations to obtain values on the high-pressure (subsonic) side of the marker points.
X

Y

Grid points crossed (highlighted by filled circles) by movement of shock-front from old position from (solid line), to a new position (dashed line).
lues at such grid points are required as they are on wrong side of the shock due to shock movement.
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9. Apply boundary conditions of the computational domain.
10. If t < tend, go back to step 1.

4.5. Stability of the finite-difference schemes used

In the shock reference frame, the flow in low-pressure side moves towards the shock at supersonic speeds. Hence, flow
variables on low pressure side of the shock are determined completely by the upstream conditions without needing any
information from the shock. The flow in the high-pressure side of the shock is subsonic in the shock reference frame. Hence,
from the flow behind the shock wave one characteristic wave should move towards the shock front while other information
needed to determine flow variables should come from the conservation laws in form of Rankine Hugoniot jump conditions.
As described in Section 3.1, a typical shock-fitting method uses an appropriate characteristic compatibility relation (Eq. (22))
along with Rankine Hugoniot jump conditions (Eqs. (13), (14) and (24)) to arrive at the expression of shock velocity (Eq.
(26)). Using these values of shock velocity, values of flow variables on the high-pressure side of the shock are computed using
Rankine–Hugoniot conditions. Thus, shock-fitting method provides coupling between the low-pressure and high-pressure
sides of the shock, which is consistent with physical laws of conservation of fluxes and propagation of characteristic waves
in compressible flows. Values of flow variables thus computed at the shock point are used as boundary conditions just like
any other method. In essence, use of shock-fitting methods is similar to solving wave equations with a characteristic bound-
ary condition. However, one needs to make sure that the implementations for finite-difference schemes on either side of the
shock do not become unstable. Stability and development of our regular 5th-order upwind scheme has been discussed in
great detail in Ref. [58] using an eigenvalue analysis of the semidiscretized equations. Here we extend the analysis by using
one sided irregular stencils as described in Section 4.2. Other options for the stability analysis could be energy methods [79]
and Laplace transforms [80,81]. One of the popular stability theories using Laplace transforms is given by Gustafsson et al.
[81]. However, some high-order schemes that are stable by criteria of Ref. [81] are not asymptotically stable [82]. We prefer
the numerical stability analysis of eigenvalue spectra of semidiscretized equations because it is a simple and effective ap-
proach which ensures asymptotic stability of a finite-difference scheme coupled with boundary treatments.

The model equation of the inviscid Euler equations is the linear wave equation
F

@u
@t
¼ �c

@u
@x

ð61Þ
With our Front-Tracking method, the wave equation is solved using interface point along with the grid points. We can as-
sume arrangement shown in Fig. 9 of these points without loss of generality.

In the implementation of shock-fitting method, some characteristic waves exit at the shock boundary while some char-
acteristics enter through the shock front in the computational domain. Hence, we will consider two set-ups for linear sta-
bility analysis with grids shown in Fig. 9:

c > 0: interface at point 1 is inlet of the wave and upwind scheme is used in interior.
c < 0: interface at point 1 is exit of the wave and downwind scheme is used in interior.

Consider first, a spatial discretization of Eq. (61) using a fifth-order upwind scheme for c > 0. In this case, Dirichlet bound-
ary condition is used at point 1, i.e., u(x1, t) = u1(t) is specified. Characteristic boundary condition at the exit point NL amounts
to computing spatial derivative u0NL at exit using the one-sided 4th order difference equation. Using the upwind finite-differ-
ence scheme on the regular grid points (described by Eq. (39)) and one-sided difference at irregular points (described by Eq.
(45)), one obtains following system of equations:
u0i ¼
P
j2In

lnj
0ðxiÞuðxjÞ ði¼ 2;3;4Þ

u0i ¼ 1
b0h

P3
k¼�3

akuiþk ði ¼ 5;6; . . . ;NL� 3Þ

u0NL�2 ¼ 1
b0h 5uNL�4 � 40uNL�3 þ 40uNL�1 � 5uNLð Þ

u0NL�1 ¼ 1
b0h �5uNL�4 þ 30uNL�3 � 90uNL�2 þ 50uNL�1 þ 15uNLð Þ

u0NL ¼ 1
b0h 15uNL�4 � 80uNL�3 þ 180uNL�2 � 240uNL�1 þ 125uNLð Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð62Þ
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ig. 9. Uniform grid with interface representing a boundary of the computational domain considered for stability analysis of wave Eq. (61).
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Here, u0i is the discretization of @u(xi,t)/@x. ln
j ðxÞ is the jth Lagrange basis polynomial on a set of points In = {1,2,3,4,5} as de-

scribed in Section 4.2. As discussed for Eq. (39) a±3 = ±1 + a/12, a±2 = �9 � a/2, a±1 = ±45 + 5a/4, a0 = �5a/3 and b0 = 60. The
scheme is upwind when a < 0 and downwind when a > 0. Following recommendation in Ref. [58] we use a = �6 for the up-
wind scheme and a = 6 for the downwind scheme. The system of Eqs. (62) can be written in following form
Im
ag

 (λ
)

Fig. 10.
(b) dow
dU
dt
¼ AUþ gðtÞ ð63Þ
where U = (u2, . . .,uNL)T and gðtÞ ¼ �c ln0

1 ðx2Þu1; ln0

1 ðx3Þu1; ln0

1 ðx4Þu1; 0; . . . ; 0
� �T

. The asymptotic stability condition for the
semi-discrete equations is that all the eigenvalues of the matrix A should contain no positive real parts. Matrix A for the up-
wind case is
A ¼ � c
hb0
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v32 v33 v34 v35

v42 v43 v44 v45

a�3 a�2 a�1 a0 a1 a2 a3
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15 �80 180 �240 125

2
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3
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ð64Þ
Here, vij ¼ hb0ln0

j ðxiÞ and (i,j 2 In). Eigenspectra for this matrix with c = h = 1.0 and NL = 51 is presented in Fig. 10(a) for three
different values of r. It is observed that all the eigenvalues of the spatial discretization matrix are negative for all the con-
sidered values of r in the present study. In our numerical experiments with different number of total grid points, real parts of
all the eigenvalues were always found to be negative. For the results presented in this study, r remains between 1.0 and 2.0.
Hence, the implementation of finite-difference method is stable for the upwind waves.

Similar to the case of the upwind wave, stability of the method can also be tested for the downwind waves (c < 0 on the
grid of Fig. 9). For this case a = 6.0 and values at point NL needs to be specified while values at point 1 are computed. Dis-
cretization leads to the system of equations represented by Eq. (63) with U = (u1, . . .,uNL�1)T and g(t) = �c/hb0 (0, . . .,a3uNL,
� 5uNL � 1, 15uNL)T. Matrix A for corresponding to the downwind wave is given by
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Eigenvalue spectra for fifth order upwind scheme applied on irregular grid of Fig. 9 with several values of r. (a) Upwind scheme, c > 0, a = �6 and
nwind scheme, c < 0, a = 6.



P.S. Rawat, X. Zhong / Journal of Computational Physics 229 (2010) 6744–6780 6763
A ¼ � c
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Eigenspectra of Matrix A for downwind wave with c = �1.0, h = 1.0 and NL = 51 is plotted in Fig. 10(b). It can be observed that
all eigenvalues are negative for the three values of r considered here. This was found to be true irrespective of number of
total points chosen in the grid-set.

For the results presented in this paper, r is between 1.0 and 2.0 and we can see that the implementation of finite-differ-
ence scheme remains stable for these values. Overall, it is observed that the implemented method is stable for the waves
either entering the computational domain through the interface or exiting through it. Asymptotic stability of the discretiza-
tions considered here imply that using method of lines and higher order Runge Kutta (RK-3 in our case) time stepping with
appropriate CFL numbers should lead to stable solutions.
5. Order of accuracy evaluation of shock-fitting methods

There have been very few studies evaluating the order of accuracy of numerical schemes for compressible flow with non-
linear discontinuities like shocks. Casper and Carpenter [66,83] simulated shock–disturbance interaction problems using a
shock-capturing scheme and found only first-order convergence in the smooth post-shock flow, even with a high order
scheme. In general, shock-capturing methods suffer from a reduction in accuracy in the post-shock flow fields. Hence, it
is important to ensure that design accuracy is achieved with a high-order shock-fitting method for shock–disturbance inter-
action problems. Suresh [84] investigated the grid convergence of a third-order shock-fitting method in computing a one-
dimensional shock-entropy wave interaction problem. His shock-fitting method is different from those considered in this
paper, since it is based on adding new grids instead of moving the grid points as the shock moves. Moreover, in the method
used by Suresh [84], the governing equations are solved in primitive variables, Riemann problem is solved to find the shock-
velocity and values of all the flow variables at the shock points are obtained by extrapolations from the interior. On the other
hand, we solve the equations in conservative form with an option of using shock-capturing scheme and consider various dif-
ferent methods of computing shock velocity as shown in Table 1. The flow considered by Suresh is a modified form of the
popular Shu–Osher problem [85], such that the solution is smooth behind the main shock. In this paper, we use the same
flow to test the numerical accuracy of various shock-fitting schemes listed in Table 1.

Specifically, we consider a one-dimensional shock interaction with an incoming entropy wave represented by density dis-
turbances in front of the shock in the following form:

At t = 0 for 0 6 x 6 2.0
q ¼ ðcþ 1ÞM2=½ðc� 1ÞM2 þ 2�
u ¼ c1=2½2ðM2 � 1Þ=fðcþ 1ÞMg �M�
p ¼ 1þ 2cðM2 � 1Þ=ðcþ 1Þ

ð66Þ
while for x > 2.0 and t P 0,
q1 ¼ 1:0þ e sin4 2:5pðxþMc1=2tÞ
� �

u1 ¼ �Mc1=2

p1 ¼ 1:0

ð67Þ
where q, c, u, M and p represent density, ratio of specific heats, velocity, Mach number and pressure, respectively. The shock
is initially located at x = 2.0 and shock-fitting methods compute the flow behind the shock only. The mean Mach number of
the shock is M = 3. The other parameters of the flow are: c = 1.4, e = 0.2. The entropy waves given by Eq. (67), which were
used by Suresh [84], are smoother than those used by Shu and Osher [85], so that solution after the shock is continuous
for up to third derivatives. The unsteady problem is computed until t = 0.32 for all results presented in this paper, so that
shocklets are not formed behind the main shock. Thus, the problem is expected to show the true order of convergence
for a shock-fitting method.

To carry out the convergence analysis, we compute the unsteady flow with three sets of different grid sizes:
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Grid I : Dx1 ¼ 2:5� 10-3 ðN ¼ 800Þ
Grid II : Dx2 ¼ 1:25� 10-3 ðN ¼ 1600Þ
Grid III : Dx3 ¼ 6:25� 10-4 ðN ¼ 3200Þ

ð68Þ
An extra solution is also obtained by using Method A-u with a very fine grid (Dx = 1.5625 � 10�4) and is served as a reference
‘‘exact” solution. The error values are obtained for different sets of grids and the approximate order of accuracy, n, is then
computed by:
n ¼ log
eDx

eDx=2

� ��
logð2Þ ð69Þ
Here, eh represents an error for grid spacing h from the reference ‘‘exact” solution.

5.1. Effects of different methods of computing shock velocities

We first compare the accuracy of Methods A-u, B-u, and C-u (defined in Table 1) for the effects of different methods of
computing the shock velocities. In the interior of the flow field, these three methods use the same fifth-order upwind central
differencing scheme of Zhong [58] in space and a RK-3 time-stepping methods in time.

5.1.1. Method A-u
Method A-u described in Section 3.1.1 and Ref. [58], is the conventional shock-fitting method where the shock is updated

using a shock acceleration relation based on the Rankine–Hugoniot conditions and one characteristic relation behind the
shock. Solutions from all three sets of grids obtained with this method are compared against the reference solution in
Fig. 11. It can be observed that the results are fairly indistinguishable from each other in full view. As we zoom in on the
different portions of the density profiles, it is noticed that results are converging with grid refinement in Fig. 11(b). Error
values for Method A-u are presented in Table 2. It can be seen that approximately fifth-order convergence is observed for
the conventional moving-grid shock-fitting Method A-u.

5.1.2. Method B-u
Method B-u uses an alternative relation for shock acceleration obtained by using a momentum equation instead of a char-

acteristic relation, as done by Henrick [68] (see Table 1). The results obtained from Method B-u are compared with those of
the conventional Method A-u for Grid I in Fig. 12. The results obtained from Method A-u match significantly better to the
reference solution as compared to those from Method B-u.

The error values for Method B-u are quantified in Table 3. The table shows that Method B-u does not reach the expected
nominal 5th-order accuracy. Instead, an order of 2.3 is obtained for Method B-u based on the results of cases of Grid II and
Grid III.
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Table 2
L-1 errors from Method A-u (conventional shock-fitting) for problem defined by (66) and (67).

Grid I eDx1 Grid II eDx2 Grid III eDx3 Order from I and II Order from II and III

Density 1.02E�05 4.39E�07 1.63E�08 4.541 4.747
Velocity 7.77E�07 2.43E�08 7.89E�10 4.999 4.945
Pressure 5.87E�06 1.89E�07 6.06E�09 4.958 4.961
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Fig. 12. Comparison of density variation between Methods A-u and B-u, and the reference solution: (a) and (b) represent zoomed portions near and away
from the shock, respectively. (Dx = 2.5 � 10�3).

Table 3
L-1 errors of Method B-u.

Grid I eDx1 Grid II eDx2 Grid III eDx3 Order from I and II Order from II and III

Density 9.66E�06 7.40E�07 1.60E�07 3.706 2.208
Velocity 2.00E�06 1.58E�07 3.24E�08 3.659 2.291
Pressure 1.58E�05 1.25E�06 2.54E�07 3.653 2.305
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As pointed out by one of the reviewers, it is important to test if Method A-u and Method B-u are converging to the same
solution as we refine the grid. To this end, we computed a fine grid solution using Method B-u with same grid spacing as the
reference solution (Dx = 1.5625 � 10�4). The L-1 errors for this solution in density, velocity, and pressure were found to be
9.83 � 10�9, 1.99 � 10�9, and 1.55 � 10�8, respectively. These error values are more than an order smaller than the errors
tabulated in Table 3. It was indeed found that the error values do not change significantly when fine grid results from Method
B-u is used instead of those from Method A-u as the reference solutions.

Thus, as compared to Methods A-u, Method B-u leads to higher errors when the shock is updated using the momentum equa-
tion. Moreover, as the grid is refined, the rate of convergence is less than the expected 5th order of accuracy. Shock velocity and
jump conditions across a shock wave in a shock-fitting algorithm should be compatible with the physics of the problem as well
as numerically stable. The flow behind the shock is subsonic. As shock is used as an inflow boundary only one characteristic is
needed from the flow behind the shock. Method A-u uses this characteristic relation directly, while Method B-u replaces this by
use of the momentum equation. We observe in our implementations that the shock acceleration method which uses the char-
acteristic relation gives more accurate results than the method using only a momentum equation.

5.1.3. Method C-u
Method C-u does not use a shock acceleration equation to compute the shock velocity. In this method, shock velocities are

obtained directly from a Riemann invariant, similar to some earlier studies [86]. Like Methods A-u and B-u, a fifth-order up-
wind finite-difference method is used in space (see Table 1) and a RK-3 scheme is used in time.

The density profiles for the three sets of grids computed by Method C-u are presented in Fig. 13 and compared to the ref-
erence profile. As we zoom on a portion away from the shock (Fig. 13(a)), we see that the results are converging towards the
reference values with grid refinement. In Fig. 13(b), the effect of grid refinement on the prediction of shock location is shown.
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Fig. 13. Density variation for the smoother version of the Shu–Osher problem for different grid sets using Method C-u: (a) and (b) are zoomed versions of
the profile showing convergence.
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We observe for all the three sets of grids used in this study, a sudden jump in density from the shock point to the adjacent
grids points after the shock. Such a jump is not observed in the solutions of Methods A-u and B-u, which advance the shock
based on shock acceleration formulas. Nevertheless, Fig. 13(b) shows that the shock location computed by Method C-u con-
verges towards the reference value as the grid is refined.

Computational order of accuracy for Method C-u is presented in Table 4. This method seems to be only first-order accu-
rate. In addition, the errors of Method C-u are about three orders of magnitudes larger for Grid II than those obtained by
Method A-u. Thus, Method C-u of determining shock velocity based on a Riemann invariant results in poor accuracy as com-
pared to those obtained from the shock acceleration formulations of Methods A-u and B-u. A possible reason for the sudden
jump in density profiles at the shock is the inconsistency between flow variables behind the shock computed by the Riemann
invariant and those computed by the local Euler equations. On the other hand, Methods A-u and B-u, which determine the
movement of the shock based on the shock acceleration, ensure that changes in shock velocity are smoother and, thus, show
expected order of convergence.

To summarize, we find that the conventional shock-fitting Method A-u of advancing the shock using the characteristics
based shock acceleration relation is most accurate for the unsteady shock disturbance interaction problems considered. It
maintains the expected 5th order accuracy of the numerical method. On the other hand, Method B-u has higher errors
and has lower order of accuracy. Method C-u is simple in implementation, but is only first-order accurate and several orders
of magnitude larger in computational errors in the test cases computed.

It should be noted, however, that convergence of Methods B-u and C-u is not in question here. The results show that the
Methods B-u and C-u do converge to the same solution as Method A-u. The exact reason for the slight reduction in accuracy
of order for Methods B-u and C-u is not known. Our best explanation for lower order of accuracy of these two methods is that
there is slight discrepancy between physics of the flow and the numerical implementation at the shock.

Method C-u was found to be only first-order accurate and performed worse than the Methods A-u and B-u. Shock velocity
in Methods A-u and B-u is found by solving shock acceleration relations. Shock velocity equations along with conservative
approximation of Euler equations form system of linear equations which is solved consistently while, for Method C-u, shock
velocity enters as a boundary condition. Methods A-u and B-u use conservative fluxes while the Method C-u computes the
shock velocity based on interpolation of flow variables without using values of fluxes. In our understanding, this results in
slight inconsistency between flow variables behind the shock computed by the Riemann invariant and those computed by
the local Euler equations.
Table 4
L-1 errors using Method C-u.

Grid I eDx1 Grid II eDx2 Order from I and II

Density 5.69E�03 3.32E�03 0.7777
Velocity 1.23E�03 6.97E�04 0.8188
Pressure 9.57E�03 5.46E�03 0.8105
Shock location 3.68E�04 1.30E�04 1.5023
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In our opinion, difference between the numerical orders of accuracy from Methods B-u and A-u is due to the fact that
method B-u considers only the normal momentum equation behind the shock to find the shock acceleration relation while
A-u uses the compatibility relation corresponding to the characteristic wave coming from behind the shock. Moreover, in
Method A-u values of fluxes on upstream and downstream side of the shock front are enforced to be equal (Eq. (24)). Hence,
the fluxes from upstream side of the shock enter the shock acceleration relation of Method A-u (Eq. (26)). In the Method B-u,
velocity flux from downstream of the shock is considered but no upstream fluxes are used in shock acceleration relation (31).
Hence, our opinion is that Method A-u is better aligned with physics of the problem as compared to Methods B-u or C-u, and
thus leads to slightly better results.

5.2. Effects of different algorithms for spatial derivatives in shock-fitting methods

In a shock-fitting method, shock-advancing algorithms considered in Section 5.1 can be combined with any algorithm for
approximating spatial derivatives in the governing equations. Conventional shock-advancing Method A-u coupled with a
5th-order upwind finite-difference scheme gives nominal high-order convergence rates if the flow behind the shock is
smooth enough. However, the high-order upwind scheme is not suitable if secondary shocks are present behind the fitted
main shock. Since the secondary shocklets can exist in a flow field of a shock–turbulence interaction problem, it is important
to consider shock capturing schemes to solve the post-shock flow, while the main shock is still fitted. It should be noted that
the choice of using shock capturing scheme behind shock fitting have to be made beforehand. If shocklets behind the main
shock is expected we should use shock capturing scheme with shock-fitting algorithm.

It should be noted that questions may arise about the stability of WENO schemes using one sided finite-difference around
the fitted shocks. We use this approach as near a boundary of the computational domain, all the points needed for usual
application of WENO scheme are not available. This problem, however, is universal to any implementation of the WENO
schemes, in both shock-capturing and shock-fitting methods, as long as a non periodic boundary is involved. We simply
use the commonly used approach to treat boundary condition for the WENO schemes at the boundary points. An alternative
way to treat the boundary is to reduce the order at the boundary and use lesser points in the stencil. We choose to use an
implementation which has been successfully used in the literature [68] since it allows treatment of boundary without reduc-
ing the global order. For smooth flows close to the shock, stability of the optimal WENO stencil can be shown with the
boundary conditions presented here. It is possible that shocklets too close to the shock might cause problems for these
WENO implementations but shock-fitting method itself is not well suited if shocklets interact with the shock. Some ad
hoc measures (like adaptively refining the grid near the shock) can be used to avoid shocklets moving to the fixed stencil
portion of the stencil. The method is still very useful if the shocklets appear far downstream of the shock. Moreover, appli-
cation of WENO schemes with shock-fitting has utility in mutli-component flow downstream of the shock. Such implemen-
tations have been previously used for study of detonations [68] and we expect them to be useful for study of many
applications including interaction of turbulence with normal shocks. Hence, we believe it is valuable to analyze convergence
properties of such methods.

For grid-convergence study, we solve the shock–disturbance interaction problem defined by Eqs. (66) and (67) using com-
bined shock-fitting and shock-capturing schemes (Methods A-w1, A-w2, A-w3, and A-w4 in Table 1). We compare the results
with those obtained from the Method A-u. For the purpose of comparison, we also evaluate the accuracy of a pure WENO5
scheme, which captures the main shock without fitting it.

Table 5 shows L-1 errors in density values computed by various schemes with three sets of grids. It can be observed that
the computational accuracy of Methods A-w1 and A-w3 do not differ significantly from those of Methods A-w2 and A-w4,
respectively. Thus, the choice of one-sided difference schemes, i.e., Eq. (49) or (50) for the points immediately behind the
shock boundary does not significantly alter the errors in flow density. However, a comparison of the error values for Methods
A-w1 and A-w3 suggests that WENO5M produces significantly smaller errors than WENO5 does. As described in Section
3.2.2, WENO5M maps weights calculated in the WENO5 scheme to the values that are closer to ideal weights for 5th-order
accuracy. Thus, in a smooth region of the flow field, WENO5M leads to smaller errors. The errors of all WENO schemes for
Methods A-w1 to A-w4, however, are at least three times as large as those of the fifth-order upwind difference scheme used
in Method A-u. It can also be observed that for all four WENO schemes coupled with a shock-fitting method, the solutions
approach to the nominal accuracy of 5th order as grid is refined. Similar observations are made in Table 6, when grid con-
vergence of velocity field is studied. However, errors in velocities are affected by the choice of one-sided difference schemes
Table 5
L-1 errors and grid convergence of density using various shock-fitting schemes and a pure shock-capturing WENO scheme.

Grid I: eDx1 Grid II: eDx2 Grid III: eDx3 Order from I and II Order from II and III

Upwind FD: Method A-u 1.02E�05 4.39E�07 1.63E�08 4.541 4.747
WENO5: Method A-w1 1.04E�04 8.35E�06 3.00E�07 3.634 4.798
WENO5: Method A-w2 1.04E�04 8.36E�06 3.04E�07 3.643 4.782
WENO5M: Method A-w3 3.33E�05 2.17E�06 4.55E�08 3.938 5.578
WENO5M: Method A-w4 3.40E�05 2.18E�06 4.61E�08 3.967 5.560
Pure WENO5 5.31E�03 2.67E�03 1.26E�03 0.994 1.080



Table 6
L-1 errors and grid convergence of velocity using various shock-fitting schemes and a pure shock-capturing WENO scheme.

Grid I: eDx1 Grid II: eDx2 Grid III: eDx3 Order from I and II Order from II and III

Upwind FD: Method A-u 7.77E�07 2.43E�08 7.89E�10 4.999 4.945
WENO5: Method A-w1 2.92E�06 1.21E�07 4.56E�09 4.595 4.727
WENO5: Method A-w2 3.78E�06 1.55E�07 5.90E�09 4.606 4.717
WENO5M: Method A-w3 1.13E�06 3.70E�08 1.29E�09 4.928 4.837
WENO5M: Method A-w4 1.44E�06 4.73E�08 1.69E�09 4.925 4.809
Pure WENO5 2.84E�03 1.55E�03 7.14E�04 0.871 1.118
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Fig. 14. Comparison of point-wise errors for two sets of grids, eDx1 and eDx2, in density values computed by three shock-fitting schemes.
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used for grid points adjacent to the shock. In general, using one-sided five-point stencils for all three grid points behind the
shock (Eq. (49)) gives slightly lesser errors in velocity as compared to those obtained by using Eq. (50). Moreover, velocity
values are seen to be converging to the nominal 5th-order accuracy for all four WENO schemes and the upwind difference
scheme (Method A-u), even for coarser grids. Errors for methods using the WENO5M scheme (Methods A-w3 and A-w4) are
generally three to five times smaller than those obtained with a WENO5 scheme (Methods A-w1 and A-w2).
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The results computed by using a pure WENO5 shock-capturing scheme are also compared in Tables 5 and 6 with those
obtained by the shock-fitting schemes. The results show that the pure 5th-order WENO5 scheme reduces to first-order accu-
racy for the problem of shock–disturbance interaction because of the discontinuity at the shock. More importantly, the com-
putational errors of the pure WENO5 scheme are about five orders of magnitude larger than those of the conventional shock-
fitting scheme (Method A-u), for Grid III. This observation demonstrates the advantage of the shock-fitting approach for the
shock–turbulence interaction problems.

Better insight for convergence is obtained by comparing point-wise errors of these methods. Spatial variations of point-
wise errors in density values obtained from three shock-fitting methods for Grids I and II are compared in Fig. 14. Since error
values are plotted on a log scale with 2 as the base, one can deduce the local order of accuracy, as defined in Eq. (69), by taking
the difference between the two profiles in Fig. 14. It can be seen that for all three schemes, errors incurred in the region just
behind the shock are higher. This is caused by the fact that local wavelengths of the disturbances immediately behind the
shock are much shorter than those away from the shock. As a result, numerical errors are higher there because of a reduction
in local grid resolution. For the two shock-fitting methods coupled with the WENO schemes (Methods A-w1 and A-w3), the
point-wise errors generally correspond to approximately 4th order accuracy, while the errors for Method A-u with the upwind
difference scheme has close to 5th order accuracy. Moreover, errors for Methods A-w1 and A-w3 with the WENO schemes are
significantly higher than those for Method A-u with the upwind scheme for the Grids I and II, as shown in the Fig. 14.

Fig. 15 compares the local density profiles obtained from a shock-fitting scheme with a WENO5 scheme (Method A-w1)
and a pure WENO5 scheme. Grids I and II are used for Method A-w1 with Dx1 = 2.5 � 10�3 and Dx2 = 1.25 � 10�3. On the
other hand, a much finer grid of Dx = 3.125 � 10�4 is used for the pure WENO5 scheme because of its larger computational
errors. Fig. 15(a) shows that, for this one-dimensional problem of an almost standing shock, post-shock oscillations are ob-
served in the solutions computed by using the pure WENO5 scheme. Such oscillations lead to deterioration of accuracy. From
Fig. 15(b), it can be observed that a coarse-grid solution of the shock-fitting scheme is much better than the highly resolved
ones obtained by the pure WENO scheme. Hence, it is expected that, for the general shock–disturbance interaction problems,
there is a clear advantage of using a shock-fitting algorithm as compared to using a pure shock-capturing scheme.

In summary, the computational results of this section show that shock-fitting algorithms combined with shock-capturing
methods are much more accurate than shock-capturing schemes alone for problems of shock disturbance interactions. On
the other hand, the accuracy of these combined schemes is slightly poorer than that of Method A-u, which is a shock-fitting
method coupled with an upwind finite-difference scheme. Nevertheless, a shock-capturing method coupled with a shock-
fitting method should provide more robustness for computing flows where secondary shocks are formed behind the fitted
main shock wave.

6. 2-D shock–disturbance interaction computed by a shock-fitting method

Numerical simulation results for two-dimensional disturbances interacting with a shock wave are available in the liter-
ature [18,23]. Mahesh [18] carried out both linear-interaction analysis and numerical simulation for a two-dimensional
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problem of a normal Mach 1.5 shock interacting with weak plane vorticity-entropy waves traveling at varying angles of inci-
dence. In this paper, the same problem is used to test our 5th-order shock-fitting algorithm of Method A-u. The computa-
tional domain is assumed to contain an ideal gas with a specific heat ratio of 1.4. Fluctuations are superposed over a
steady Mach 1.5 normal shock solutions (obtained from the Rankine–Hugoniot relations) for the gas. In a shock-fitting set-
ting, disturbances propagate downstream from the inflow boundary and interact with the normal shock as shown in Fig. 16.
The interactions of a normal shock and the forcing disturbances cause time-periodic oscillations of the shock front and dis-
turbance amplifications behind the shock.

In shock-fitting Method A-u, a stationary Mach 1.5 shock wave is perturbed at t = 0 by imposing a small amplitude
disturbance field of the incident plane wave at angle w1 to the x-axis. The incident wave field has the following
form:
Fig
u0 ¼ U1Av sin w1 cosðkxxþ kyy� U1kxtÞ
v 0 ¼ �U1Av cos w1 cosðkxxþ kyy� U1kxtÞ
q0 ¼ q1Av cos w1 cosðkxxþ kyy� U1kxtÞ
p0 ¼ 0:0

ð70Þ
where variables U and q denote the mean velocity and density, respectively. The variables u0, v0, p0 and q0 represent fluctu-
ations in velocities, pressure, and density, respectively. Subscripts 1 and 2 denote the upstream and downstream steady
states with respect to the shock.

For the computational results presented here, ky = ksinw1 = 1 and kx = kcosw1 is used. The domain length in y direction is
Ly = 2p to ensure that the flow is periodic over the computational domain in the y direction. The flow variables presented
here are non-dimensionalized by appropriate combinations of a reference length L0 = 2p, a reference pressure p�0 and a ref-
erence density q�0. Here, p�0 and q�0 correspond to the unperturbed free-stream values. For the present study, we use
Av = Ae = 0.025, i.e., the incoming vorticity and entropy waves in same phase are considered. The shock, represented by
the left boundary of the domain, is initially located at x = 3p/2.

The 2-D problem is computed by solving the Euler equations with our two-dimensional 5th-order shock-fitting algorithm
of Method A-u. Periodic boundary conditions are used in the y direction. In streamwise direction x, the shock forms the in-
flow boundary which is treated by the shock-fitting algorithm. As computations are started, large oscillations in flow prop-
erties are observed downstream of the shock. These initial transient solutions propagate downstream followed by an
oscillating field. The exit boundary on the right hand side of the computational domain presents a problem for the compu-
tations since the flow is subsonic at the exit. Non-reflecting boundary conditions at the exit need to be chosen such that vor-
ticity, acoustic and entropy perturbation in the domain are allowed to propagate out of the domain without spurious
reflection. Moreover, we use a sponge layer or buffer zone (Fig. 16) where reflecting waves are damped out. In this paper,
we use the non-reflecting boundary conditions of Poinsot and Lele [87] at the outflow boundary and found that vorticity
waves leave the domain without reflection. Consequently we are able to obtain time-periodic vorticity solutions down-
stream of the shock.

Fig. 17 shows the vorticity profile after the initial transients of the solution leave the domain. The shock, which oscillates
in response to the forcing waves, is located along the left boundary of the computational domain. It can be seen that a sinu-
soidal vorticity profile without numerical oscillations is obtained along the x direction.

Mahesh [18] considered linearized Euler equations behind the shock and solved a boundary-value problem for the shock
displacement and the flow behind the shock wave. It was found that the solution behind the shock wave has two different
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regimes that differ in nature of the pressure field. For a given Mach number, the two regimes are demarcated by a critical
angle of incidence denoted by wc. If w1 is less than wc, the transmitted pressure field behind the shock is a plane sinusoidal
wave. For an incident vorticity or entropy wave, the transmitted waves behind the shock contain all three kinds of waves, i.e.,
acoustic, vorticity, and entropy waves. However, wc < w1 < p/2 if, the pressure perturbations behind the shock wave form an
evanescent field. There is no transmitted acoustic wave behind the shock, though there are still entropy and vorticity trans-
mitted waves. Linear analysis conducted by Mahesh predicts a value of 61.36� for the critical incidence angle for a Mach 1.5
flow. This information from linear theory was used to qualitatively validate our results.

Fig. 18 shows profiles of instantaneous pressure, vorticity and entropy behind the shock in the x direction along a hori-
zontal line located at y = p for three angles of incidence. We define a dimensionless entropy s* of the fluid at pressure, p and
density q as follows:
s� ¼ ln p
c
� lnq ð71Þ
It can be seen from this figure that the pressure profiles are sinusoidal for the cases of w1 = 15� and w1 = 45�, where w1 is less
than wc. In addition, the wavelength for oscillations in the x direction increases significantly when w1 increases from 15� to
45�. This is in agreement with the linear theory that the wavenumber in the x direction is proportional to cosw1 for a fixed
Mach number of the incoming flow. In addition, for the case of w1 = 75� > wc, as expected, the computed pressure profiles
approach an asymptotic constant value of the steady state solution behind the shock. In this case, pressure perturbations
decrease exponentially as we move downstream behind the shock. Fig. 18 also shows that the profiles of both vorticity
and entropy are sinusoidal variations for all three incident angles. Similar to the pressure waves, the wavelength along
the x direction increases with the increasing incidence wave angle. While the pressure perturbations show different behav-
iors in the two regimes, the transmitted vorticity and entropy waves remain sinusoidal for any incident angle. This behavior
is predicted by the linear theory and thus qualitatively confirms the validity of the results obtained from the current shock-
fitting computations.

The linear theory reported by Mahesh [18] provides amplification factors for perturbations in vorticities, x022 =x021 . As
shown in Fig. 18, vorticity perturbations downstream of the shock are plane waves for all angles of incidence. After the initial
transient solutions leave the computational domain, statistics of the vorticity perturbations are calculated over a period of
time for the inflow disturbance (2p/U1kx). Fig. 19 compares the amplification factors, x022 =x021 , obtained from our shock-fit-
ting solutions to the numerical and theoretical solutions published by Mahesh. Our shock-fitting results have a very good
agreement with those of the linear theory solutions. It is noticed that Mahesh’s results do not agree with the linear theory
results when the incident angle is 61.36�, which is equal to the critical value of wc. On the other hand, the results of the
shock-fitting method (Method A-u) agree well with those of the linear theory.

Overall, for the test case of two-dimensional shock–disturbance interaction, the results of conventional shock-fitting
method are in a good agreement with those of the linear theory. It is important to note that, for the same problem, stan-
dard shock-capturing schemes suffer from spurious numerical oscillations for the cases when the incidence angle of dis-
turbance waves is equal or greater than the critical angle wc. Fig. 20 compares density distributions obtained from the
pure WENO5 scheme and those computed by two shock-fitting schemes: Method A-u and Method A-w1. The incident
angle is 75�, which is larger than the critical angle. For a good comparison of the pure WENO5 results with those ob-
tained from the shock-fitting schemes, we use two computational domains on both sides of the fitted shock and results.
It is observed that, at this incident angle, the shock-capturing scheme produces spurious oscillations in the wave field
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behind the shock. Such spurious oscillations do not exist in both shock-fitting solutions. Thus, Fig. 20 demonstrates that
the shock-fitting is superior for the problem of shock–turbulence interaction if the main shock maintains a well-defined
front.
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7. Results of fixed-grid shock-fitting schemes

The 1-D and 2-D flow problems considered in the previous sections are used in this section to test our new two-dimen-
sional front-tracking (fixed-grid) shock-fitting algorithm described in Section 4. In a fixed-grid setting, the governing flow
equations are solved both ahead of the shock and behind the shock. A schematic of the computational set-up is shown in
Fig. 21. The shock front is represented by an array of marker points which are defined as the intersections of shock-front with
the grid lines. The grid lines are fixed and the shock can freely move over the underlying grid points. As a benchmark for
validation of front-tracking shock-fitting schemes, we use the conventional shock-fitting algorithm, Method A-u, to solve
the flow fields on both sides of the shock. The computational domain of this implementation of the shock-fitting scheme
is showed in Fig. 21(b). Both sides of shock are treated as separate zones with the shock as common boundary. Since the flow
behind the shock is subsonic, we use non-reflecting boundary conditions with a buffer zone. Periodic boundary conditions
were used in the y direction.
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tracking based shock-fitting scheme and (b) computational domain for multi-zone moving grid shock-fitting method.
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7.1. Order of accuracy evaluation of fixed-grid shock-fitting methods

To test the order of accuracy of the solution with the front-tracking method, we carry out the grid-convergence study
similar to that presented in Section 5 for the moving-grid shock-fitting schemes. The same shock–disturbance interaction
problem described in Section 5.1 is used to test the fixed-grid shock-fitting scheme.

For the conventional moving-grid shock-fitting methods in Section 5, the reference frame is fixed with the mean shock
motion so that the shock is stationary when the disturbances are absent. For the fixed-grid shock-fitting computations, shock
waves can move freely across the grid lines. To test the capability of this property of the method, the reference frame is set
such that a Mach 3 shock moves into still fluid with density variations. Thus flow conditions upstream of the moving shock
are
Table 7
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Fig. 22 shows density profiles and errors at the final time of t = 0.32 for the shock–disturbance interaction problem computed
by the fixed-grid shock-fitting scheme for Grids I and II. In the density distributions shown in Fig. 22(a), the solutions of these
grids are indistinguishable from the reference solution in the figure. The spatial variations of point-wise errors for Grids I and
II are compared in Fig. 22(b). It can be observed that the errors for the finer grid are significantly smaller than those of the
coarser grid. As defined in Eq. (69), the differences between the two lines in Fig. 22(b) represents the computational order of
accuracy of the method. It can be seen in the figure that the current fixed-grid shock-fitting scheme is approximately 5th
order accurate at almost all spatial points.

To quantify the computational order of accuracy of the method, we take the L-1 norm of local errors and compute the
approximate error of convergence from Eq. (69) for different sets of grids. These values are tabulated in Table 7. It is found
that the fixed-grid shock-fitting method has a convergence rate close to the 5th order for flow variables. The method is 4th-
order accurate for the shock locations. These results are expected from our method which uses a 5th-order upwind scheme
rs and grid convergence of fixed grid shock-fitting.
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in the interior with a 4th-order one-sided finite-difference algorithm near the shock. Moreover, the results show that the
new fixed-grid shock-fitting solution does not incur spurious oscillations around the shock. This provides evidence of the
advantages of using shock-fitting methods for the shock–turbulence interaction problems.

7.2. Results for 2-D shock and disturbance interaction

In this section, the new fixed-grid shock-fitting method is tested in the same 2-D shock–disturbance interaction problem
described in Section 6. Several cases of different incident wave angles are computed. The results are compared with those
obtained by the conventional moving-grid shock-fitting scheme (Method A-u).

Fig. 23 shows instantaneous solutions for the interaction of a vorticity-entropy wave with a shock with at an incidence
angle of w1 = 15� at t = 10.0. It can be seen that a sinusoidal density profile is obtained along the x-direction. Again, no spu-
rious numerical oscillations are observed in the shock-fitting solutions. The figure also shows the unsteady shock front ob-
tained by the method. The shock interface itself is sinusoidal as expected from linear theory.

As a benchmark for validation of the front-tracking results, we use the conventional shock-fitting algorithm of Method A-
u for comparison. Both sides of the shock are treated as separate zones, with the shock as a common boundary. A fifth-order
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Fig. 23. Instantaneous solutions for the interaction of a vorticity–entropy wave with a shock with w1 = 15� at t = 10.0: (a) contours of density, (b) density
distribution along the center line of the domain at y = p, and (c) shock front defined by marker points.
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upwind finite-difference scheme is applied separately on both sides of the shock. Fig. 24 compares the results of the current
front-tracking shock-fitting method and the moving-grid shock-fitting method for the case of 45� angle of incidence at t = 10.
We see that the front-tracking results agree very well with those obtained from the conventional shock-fitting method on
moving-grids for all the variables. Since the incidence angle w1 is less than wc in this case, the transmitted waves for pres-
sure, vorticity, and entropy remain sinusoidal behind the shock. Fig. 24 also compares the shock fronts captured by the two
versions of the shock-fitting methods. Fig. 24(d) shows that the shock profile is sinusoidal and the shock moves through the
underlying fixed grid. In addition, the location and shock shape computed by using the front-tracking method agrees very
well to those obtained by Method A-u of the conventional moving-grid shock-fitting method.

Fig. 25 compares the results of the two shock-fitting schemes for the case of w1 = 75�. The incidence angle of this case is
larger than the critical value wc. Again, the variations in flow variables obtained by the front-tracking method agree very well
with those obtained from Method A-u. As compared to the results for the case of 45� angle of incidence, the transmitted en-
tropy wave and vorticity wave have larger wavelengths while they still remain sinusoidal as expected. The pressure fluctu-
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Fig. 24. Comparison of instantaneous flow variables and shock front computed from the conventional shock-fitting Method A-u and the new fixed-grid
shock-fitting method for distributions along the center line at y = p at t = 10. The case has a 45� angle of incidence.
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Fig. 25. Comparison of instantaneous flow variables and shock front computed from the conventional shock-fitting method (Method A-u) and the new
fixed-grid shock-fitting method for distributions along the center line at y = p at t = 10. The case has a 75� angle of incidence.
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ations, however, are an evanescent field as predicted by linear theory. Similarly, the interface data presented in this figure
shows that the front-tracking method predicts the location and geometry of the shock well.

In summary, our test results show that the new fixed-grid (front-tracking) shock-fitting method maintains high-order
accuracy for computing the shock–disturbance interaction problem. The new method also compares very well with the con-
ventional shock-fitting method, i.e., Method A-u for the 2-D shock–disturbance interaction problem. Although the results
obtained from the 2-D front-tracking method are found to be satisfactory for the problem considered here, the algorithm
still needs further improvement. For example, the front-tracking algorithm was found to be very tedious to implement when
a high-order approximation is required. High-order implementation may be more prone to spurious numerical oscillations
when points need to be removed in the grid stencils. Moreover, it is found in the numerical computations that as the ampli-
tudes of the incoming waves are increased, the conventional moving-grid shock-fitting methods are much more robust as
compared to the front-tracking shock-fitting method. Therefore, for a shock–turbulence interaction problem with a relatively
simple shock front, the conventional moving-grid shock-fitting methods in a multi-zone setting are more suitable than the
current implementation of front-tracking shock-fitting method. Nevertheless, the results presented here offer ample moti-
vation for developing the fixed-grid shock-fitting as a uniformly high order alternative for problems with more complex
shock geometry.
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8. Conclusions

We have developed a new high-order front-tracking shock-fitting method for the shock–turbulence interaction problems,
and have carried out grid-convergence analysis for different variations of shock-fitting methods with both moving and fixed
grids. We find that fifth-order accuracy is obtained when the conventional shock acceleration based method is used for com-
puting the shock velocities. This is the case when either the fifth-order upwind scheme or fifth-order WENO schemes are
used for discretizing the spatial derivatives in the flow equations. However, our results show that other methods for com-
puting shock advancement lead to deterioration in computational accuracy. For the two-dimensional shock–disturbance
interaction problem, computational results from the conventional 5th-order shock-fitting algorithm agree very well with
the predictions of a linear-interaction analysis. We have also tested the new front-tracking implementation of the shock-fit-
ting scheme on a fixed grid. Our test results show that the new fixed-grid (front-tracking) shock-fitting method maintains
high-order accuracy for computing the shock–disturbance interaction problem. The new method also compares very well
with the conventional shock-fitting method for the 2-D shock–disturbance interaction problem. It is also shown that a pure
high-order shock-capturing scheme suffers from a reduction in accuracy and spurious numerical oscillations for such prob-
lems. Thus shock-fitting methodology offers a high-order alternative for problems involving shock–turbulence interaction.
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